
前端面试必备八股文——性能优化（6题）​

图片懒加载原理

图片懒加载也叫延迟加载，只加载当前屏幕的图片，可视区域外的图片不会进行加载，只有当屏幕滚

动的时候才加载。

特点：

• 提高网页加载速度

• 减少后台服务器压力

• 提升用户体验

原理

• 将图片地址存储到 data-xxx 属性上​

• 判断图片是否在可视区域

• 如果在，就设置图片 src ​

• 绑定 scroll 监听事件​

节流和防抖

节流

节流是一种常用的性能优化技术，它可以限制函数的执行频率，避免过多的重复操作，提升页面的响

应速度。

函数在 n 秒内只执行一次，如果多次触发，则忽略执行。​

应用场景：

• 拖拽场景

• scroll场景​

• 窗口大小调整

「手写代码-节流」​

防抖

防抖函数可以将多次高频率触发的函数执行合并成一次，并在指定的时间间隔后执行一次。通常在处

理输入框、滚动等事件时使用，避免频繁触发事件导致页面卡顿等问题。

https://juejin.cn/post/7272737742307065914#heading-5

函数在 n 秒后再执行，如果 n 秒内被触发，重新计时，保证最后一次触发事件 n 秒后才执行。​

应用场景：

• 输入框搜索

• 表单提交按钮

• 文本器保存

「手写代码-防抖」​

SPA首屏为什么加载慢？​

SPA 首屏加载慢可能有以下原因：

• JavaScript文件过大：SPA通常有很多 JavaScript 文件，如果这些文件的大小过大或加载速度
慢，就会导致首屏加载缓慢。可以通过代码分割和打包、使用CDN等方式来优化加载速度。​

• 数据请求过多或数据请求太慢：SPA通过 AJAX 或 Fetch 等方式从后端获取数据，如果数据请求过
多或数据请求太慢，也会导致首屏加载缓慢。可以通过减少数据请求、使用数据缓存、优化数据接

口等方式来优化数据请求速度。

• 大量图片加载慢：如果首屏需要加载大量图片，而这些图片大小过大或加载速度慢，也会导致首屏
加载缓慢。可以通过图片压缩、使用图片懒加载等方式来优化图片加载速度。

• 过多的渲染和重绘操作：如果在首屏加载时进行大量的渲染和重绘操作，也会导致首屏加载缓慢。
可以通过尽可能少的DOM操作、使用CSS3动画代替JS动画等方式来优化渲染和重绘操作。​

• 网络问题：网络问题也会影响SPA首屏加载速度，比如网络延迟、丢包等。可以通过使用CDN、使
用HTTP/2等方式来优化网络问题。​

为什么要做性能优化

性能优化是为了提高网页的加载速度和相应速度，给用户带来更好的体验和用户满意度，同时还能减

少服务器的负载压力，以此来提升程序的稳定性，具体有以下几个因素：

• 提高用户体验

• 增加页面访问量

• 提高搜索引擎排名

• 减少服务器压力

• 节约成本

• 提高用户留存率

常见性能优化有哪些关键指标？

https://juejin.cn/post/7272737742307065914#heading-6

• 首屏加载时间First Contentful Paint（FCP）：首次内容绘制时间，指浏览器首次绘制页面中至
少一个文本、图像、非白色背景色的 canvas/svg 元素等的时间，代表页面首屏加载的时间点。

• 首次绘制时间First Paint（FP）：首次绘制时间，指浏览器首次在屏幕上渲染像素的时间，代表页
面开始渲染的时间点。

• 最大内容绘制时间Largest Contentful Paint（LCP）：最大内容绘制时间，指页面上最大的可见
元素（文本、图像、视频等）绘制完成的时间，代表用户视觉上感知到页面加载完成的时间点。

• 用户可交互时间Time to Interactive（TTI）：可交互时间，指页面加载完成并且用户能够与页面
进行交互的时间，代表用户可以开始操作页面的时间点。

• 页面总阻塞时间Total Blocking Time (TBT)：页面上出现阻塞的时间，指在页面变得完全交互之
前，用户与页面上的元素交互时出现阻塞的时间。TBT应该尽可能小，通常应该在300毫秒以内。​

• 搜索引擎优化Search Engine Optimization (SEO)：网站在搜索引擎中的排名和可见性。评分范
围从0到100，100分表示网站符合所有SEO最佳实践。​

除此之外还有常见的 258 原则、 GOOGLE团队建议

258原则​

• 2：页面的加载时间应该控制在2秒以内，这是用户能够接受的最短时间。​

• 5：页面的加载时间在5秒以内，用户对页面加载速度的不满意度开始上升。​

• 8：页面的加载时间超过8秒，用户的流失率将急剧增加，用户很可能会放弃访问该页面。​

性能优化方式有哪些

HTML&CSS​

• 减少 DOM 数量，减轻浏览器渲染计算负担。

• 使用异步和延迟加载 js 文件，避免 js 文件阻塞页面渲染

• 压缩 HTML、CSS 代码体积，删除不要的代码，合并 CSS 文件，减少 HTTP 请求次数和请求大
小。

• 减少 CSS 选择器的复杂程度，复杂度与阿高浏览器解析时间越长。

• 避免使用 CSS 表达式在 javascript 代码中

• 使用 css 渲染合成层如 transform 、 opacity 、 will-change 等，提高页面相应速度减
少卡顿现象。

• 动画使用 CSS3 过渡，减少动画复杂度，还可以使用硬件加速。

JS​

• 减少 DOM 操作数量

https://link.juejin.cn/?target=https%3A%2F%2Fwww.51cto.com%2Farticle%2F755172.html
https://link.juejin.cn/?target=https%3A%2F%2Fwww.51cto.com%2Farticle%2F755172.html

• 避免使用 with 语句、 eval 函数，避免引擎难以优化。

• 尽量使用原生方法，执行效率高。

• 将 js 文件放到文件页面底部，避免阻塞页面渲染

• 使用事件委托，减少事件绑定次数。

• 合理使用缓存，避免重复请求数据。

Vue​

• 合理使用 watch 和 computed ，数据变化就会执行，避免使用太多，减少不必要的开销

• 合理使用组件，提高代码可维护性的同事也会降低代码组件的耦合性

• 使用路由懒加载，在需要的时候才会进行加载，避免一次性加载太多路由，导致页面阻塞

• 使用 Vuex 缓存数据

• 合理使用 mixins ，抽离公共代码封装成模块，避免重复代码。

• 合理使用 v-if 、 v-show

• v-for 不要和 v-if 一起使用， v-for 的优先级会比 v-if 高

• v-for 中不要用 index 做 key ，要保证 key 的唯一性

• 使用异步组件，避免一次性加载太多组件

• 避免使用 v-html ，存在安全问风险和性能问题，可以使用 v-text

• 使用 keep-alive 缓存组件，避免组件重复加载

Webpack优化​

• 代码切割，使用 code splitting 将代码进行分割，避免将所有代码打包到一个文件，减少响
应体积。

• 按需加载代码，在使用使用的时候加载代码。

• 压缩代码体积，可以减小代码体积

• 优化静态资源，使用字体图标、雪碧图、webp格式的图片、svg图标等​

• 使用 Tree Shaking 删除未被引用的代码​

• 开启 gzip 压缩

• 静态资源使用 CDN 加载，减少服务器压力

网络优化

• 使用 HTTP/2

• 减少、合并 HTTP 请求，通过合并 CSS、JS 文件、精灵图等方式减少请求数量。

• 压缩文件， 开启 nginx ， Gzip 对静态资源压缩​

• 使用 HTTP 缓存，如强缓存、协商缓存

• 使用 CDN ，将网站资源分布到各地服务器上，减少访问延迟

