
0.1+0.2问题​

转成整数处理

function accAdd(arg1,arg2){
 var r1,r2,m;
 try{
 r1=arg1.toString().split(".")[1].length
 }catch(e){
 r1=0
 }
 try{
 r2=arg2.toString().split(".")[1].length
 }catch(e){
 r2=0
 }
 m=Math.pow(10,Math.max(r1,r2));
 return (arg1*m+arg2*m)/m;
}
var result = accAdd(0.1,0.2)
console.log(result) // 0.3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

大数相加解决[415.字符串相加]​

传两个字符串进来，返回一个字符串

var addStrings = function (num1, num2) {
 let result = '';
 let i = num1.length - 1, j = num2.length - 1, carry = 0;
 while (i >= 0 || j >= 0) {
 let n1 = i >= 0 ? +num1[i] : 0;
 let n2 = j >= 0 ? +num2[j] : 0;
 const temp = n1 + n2 + carry;
 carry = temp / 10 | 0;
 result = `${temp % 10}${result}`;
 i--; j--;
 }
 if (carry === 1) result = `1${result}`;
 return result;

1
2
3
4
5
6
7
8
9
10
11
12
13

https://link.juejin.cn/?target=https%3A%2F%2Fleetcode.cn%2Fproblems%2Fadd-strings%2F

};14

传两个字符串进来，返回一个字符串

• 转成数字相加的问题

• 注意处理全零字符串的情况

var multiply = function (num1, num2) {
 let result = '0';
 let i = num1.length - 1;
 while (i >= 0) {
 let subfixZero = new Array(num1.length - 1 - i).fill('0').join('');
 let sumCount = +num1[i];
 let tempSum = '0';
 while (sumCount > 0) {
 tempSum = bigSum(tempSum, num2);
 sumCount--;
 }
 tempSum = `${tempSum}${subfixZero}`;
 result = bigSum(result, tempSum);
 i--;
 }
 // 处理一下开头的零​
 for (let i = 0; i < result.length; i++) {
 if (result[i] !== '0') {
 return result.slice(i);
 }
 }
 return '0';

 function bigSum(n1, n2) {
 let result = '';
 let i = n1.length - 1, j = n2.length - 1, curry = 0;
 while (i >= 0 || j >= 0) {
 let l1 = i >= 0 ? +n1[i] : 0;
 let l2 = j >= 0 ? + n2[j] : 0;
 let sum = l1 + l2 + curry;
 curry = sum / 10 | 0;
 result = `${sum % 10}${result}`;
 i--; j--;
 }
 if (curry === 1) result = `1${result}`;
 return result;
 }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

数组乱序输出

Math.random输出的结果是0-1内的小数，可以直接通过length映射​

const randomIndex = Math.round(Math.random()*(array.length - 1 -i) + 1);1

数组去重复（7种方法）​

关键点是NaN怎么判断，对NaN进行去重，这个题目的另一个考察点是对API的灵活运用，虽然很多方

法不可能用在实际的场景中，但是who care，面试官只会觉得你懂得好多～​

• 1.利用Set()+Array.from()​

◦ 方式对NaN和undefined类型去重也是有效的，是因为NaN和undefined都可以被存储在Set

中， NaN之间被视为相同的值​

• 2.利用两层循环+数组的splice方法​

◦ 此方法对NaN是无法进行去重的，因为进行比较时NaN !== NaN​

• 3.利用数组的indexOf方法​

◦ 新建一个空数组，遍历需要去重的数组，将数组元素存入新数组中，存放前判断数组中是否已
经含有当前元素，没有则存入。此方法也无法对NaN去重​

◦ indexOf() 方法：返回调用它的String对象中第一次出现的指定值的索引​

• 4.利用数组的includes方法​

◦ 此方法逻辑与indexOf方法去重异曲同工，只是用includes方法来判断是否包含重复元素。​

• 5.利用数组的filter()+indexOf()​

◦ 输出结果中不包含NaN，是因为indexOf()无法对NaN进行判断​

• 6.利用Map()​

◦ 使用Map()也可对NaN去重，原因是Map进行判断时认为NaN是与NaN相等的​

• 7.利用对象​

◦ 和Map()是差不多的，主要是利用了对象的属性名不可重复这一特性。​

数组扁平化flatten(6种方法)​

• 递归

• reduce​

• 扩展运算符

• toString,split​

• es6 flat​

• 正则和json，json.stringify​

function flatten(arr) {
 let result = [];
 for (let i = 0; i < arr.length; i++) {
 if (Array.isArray(arr[i])) {
 result = result.concat(flatten(arr[i]));
 } else {
 result.push(arr[i]);
 }
 }
 return result;
}

function flatten(arr) {
 return arr.reduce((p, c) => {
 return p.concat(Array.isArray(c) ? flatten(c) : c);
 }, [])
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

🔥对象扁平化flatObj​

多次遇到，建议背诵

/* 题目*/​
var entryObj = {
 a: {
 b: {
 c: {
 dd: 'abcdd'
 }
 },
 d: {
 xx: 'adxx'
 },
 e: 'ae'
 }
}

// 要求转换成如下对象​
var outputObj = {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

 'a.b.c.dd': 'abcdd',
 'a.d.xx': 'adxx',
 'a.e': 'ae'
}

function flat(obj, path = '', res = {}, isArray) {
 for (let [k, v] of Object.entries(obj)) {
 if (Array.isArray(v)) {
 let _k = isArray ? `${path}[${k}]` : `${path}${k}`;
 flat(v, _k, res, true);
 } else if (typeof v === 'object') {
 let _k = isArray ? `${path}[${k}].` : `${path}${k}.`;
 flat(v, _k, res, false);
 } else {
 let _k = isArray ? `${path}[${k}]` : `${path}${k}`;
 res[_k] = v;
 }
 }
 return res;
}

console.log(flat({ a: { aa: [{ aa1: 1 }] } }))

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

数字千分位分割

注意可能有小数

function format(number) {
 number = number.toString();
 let decimals = '';
 number.includes('.') ? decimals = number.split('.')[1] : decimals;

 let len = number.length;
 if (len < 3) {
 return number;
 } else {
 let temp = '';
 let remainder = len % 3;
 decimals ? temp = '.' + decimals : temp;
 if (remainder > 0) {
 return number.slice(0, remainder) + ',' + number.slice(remainder,
len).match(/\d{3}/g).join(',') + temp;
 } else {
 return number.slice(0, len).match(/d{3}/g).join(',') + temp;
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14

15
16
17

 }
}

18
19

js下划线转驼峰处理「快手」​

正则法

function camelCase(str) {
 return str.replace(/_([a-z])/g, function(match, group1) {
 return group1.toUpperCase();
 });
}

console.log(camelCase("some_string")); // "someString"

1
2
3
4
5
6
7

补充

function camelCase(str) {
 return str.replace(/([-_])([a-z])/g, function(match, group1, group2) {
 return group2.toUpperCase();
 });
}

console.log(camelCase("some-string_with-underscores"));

1
2
3
4
5
6
7

Hex转RGB的方法​

function hexToRgb(val) {
 //HEX十六进制颜色值转换为RGB(A)颜色值​
 // 16进制颜色值的正则​
 var reg = /^#([0-9a-fA-f]{3}|[0-9a-fA-f]{6})$/;
 // 把颜色值变成小写​
 var color = val.toLowerCase();
 var result = '';
 if (reg.test(color)) {
 // 如果只有三位的值，需变成六位，如：#fff => #ffffff​
 if (color.length === 4) {
 var colorNew = '#';
 for (var i = 1; i < 4; i += 1) {
 colorNew += color.slice(i, i + 1).concat(color.slice(i, i + 1));
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14

 color = colorNew;
 }
 // 处理六位的颜色值，转为RGB​
 var colorChange = [];
 for (var i = 1; i < 7; i += 2) {
 colorChange.push(parseInt('0x' + color.slice(i, i + 2)));
 }
 result = 'rgb(' + colorChange.join(',') + ')';
 return { rgb: result, r: colorChange[0], g: colorChange[1], b:
colorChange[2] };
 } else {
 result = '无效';
 return { rgb: result };
 }
}

15
16
17
18
19
20
21
22
23

24
25
26
27
28

实现模版字符串解析

var template = `
<div>
 <% if(name){ %>
 %= name =%
 <% } %>
 %= age =%
<div>`
let str = rander(template, {name: '小明', age: 18})
// 解析完成 str <div> 小明18<div>​

1
2
3
4
5
6
7
8
9

function parseTemplateString (templateString, data) {
 // 使用正则表达式在模板字符串中查找所有 ${...} 的实例​
 const regex = /${(.*?)}/g;
 // 使用 replace() 方法将每个 ${...} 的实例替换为数据对象中相应的值​
 const parsedString = templateString.replace(regex, (match, key) => {
 // 使用 eval() 函数来评估 ${...} 中的表达式，并从数据对象中返回相应的值​
 return eval(`data.${key}`);
 });
 return parsedString;
}

1
2
3
4
5
6
7
8
9
10

🔥数组转树形结构的三种方法​

递归解法非常好理解，代码量也很少，题目出现概率很高

{
 "city": [
 { "id": 12, "parent_id": 1, "name": "朝阳区" },
 { "id": 241, "parent_id": 24, "name": "田林街道" },
 { "id": 31, "parent_id": 3, "name": "广州市" },
 { "id": 13, "parent_id": 1, "name": "昌平区" },
 { "id": 2421, "parent_id": 242, "name": "上海科技绿洲" },
 { "id": 21, "parent_id": 2, "name": "静安区" },
 { "id": 242, "parent_id": 24, "name": "漕河泾街道" },
 { "id": 22, "parent_id": 2, "name": "黄浦区" },
 { "id": 11, "parent_id": 1, "name": "顺义区" },
 { "id": 2, "parent_id": 0, "name": "上海市" },
 { "id": 24, "parent_id": 2, "name": "徐汇区" },
 { "id": 1, "parent_id": 0, "name": "北京市" },
 { "id": 2422, "parent_id": 242, "name": "漕河泾开发区" },
 { "id": 32, "parent_id": 3, "name": "深圳市" },
 { "id": 33, "parent_id": 3, "name": "东莞市" },
 { "id": 3, "parent_id": 0, "name": "广东省" }
]
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

function arrayToTreeV3(list, root) {
 return list
 .filter(item => item.parent_id === root)
 .map(item => ({...item, children: arrayToTreeV3(list, item.id)}))
}

1
2
3
4
5

获取URL中的参数​

这里主要还是正则表达式的设计

• /?&/igm，前面是？或者&，任意字符直到遇到=，使用非贪婪模式，等号后面是非&符号的任意字

符，然后去匹配就好了

• 理论上可以用matchAll，然后用迭代器去处理​

function name(url) {
 const _url = url || window.location.href;
 const _urlParams = _url.match(/[?&](.+?=[^&]+)/igm);
 return _urlParams ? _urlParams.reduce((a,b) => {
 const value = b.slice(1).split('=');

1
2
3
4
5

https://link.juejin.cn/?target=.%2B%3F%3D%255B%255E%26%255D%2B

 a[value[0]] = value[1];
 return a;
 }, {}) : {}

}

6
7
8
9
10

小结

场景题目其实很多，没办法去枚举，但是这里标记出来的是相对高频的题目

