Al im E XA N E RN FE S

=

IARHZIEF
2 REIWHE, MEERSTH, TBREASUSS

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18

function getUrlByFetch() {
let idx = maxLoad;

function getContention(index) {
fetch(pics[index]).then(() => {
idx++;
if(idx < pics.length){
getContention(idx);
}
1)
}
function start() {
for (let i = 0; i < maxLoad; i++) {

getContention(i);

start();

wmHEIEFINpromiseRHiAE 2

E—EBHEF—ITY

function taskPool() {
this.tasks = [];
this.pool = [];
this.max = 2;

taskPool.prototype.addTask = function(task) {
this.tasks.push(task);

this.run();

taskPool.prototype.run = function() {

Bt

13 if(this.tasks.length === 0) {

14 return;

15 }

16 let min = Math.min(this.tasks.length, this.max - this.pool.length);
17 for(let i = 0; i<min;i++) {

18 const currTask = this.tasks.shift();

19 this.pool.push(currTask);

20 currTask().finally(() => {

21 this.pool.splice(this.pool.indexOf(currTask), 1);
22 this.run();

23 1)

24}

25 }

=¥ lazysE3UiA A: person.eat().sleep(2).eat()
REZHIMEGFENESREL K, REEFE—MESNYIE

function Person() {
this.queue = [];
this.lock = false;

Person.prototype.eat = function () {

this.queue.push(() => new Promise(resolve => { console.log('eat');
resolve(); 1));
// this.run();
9 return this;
10 }
11
12 Person.prototype.sleep = function(time, flag) {

(o¢]

13 this.queue.push(() => new Promise(resolve => {

14 setTimeout(() => {

15 console.log('sleep', flag);
16 resolve();

17 }, time x 1000)

18 1));

19 // this.run();

20 return this;

21 1

22

23 Person.prototype.run = async function() {
24 if(this.queue.length > 0 && !this.lock) {
25 this.lock = true;

26 const task = this.queue.shift();

27
28
29
30
31
32
33
34

await task();
this.lock = false;
this.run();

const person = new Person();

person.eat().sleep(l, '1').eat().sleep(3, '2').eat().run();

class Lazy {
// REEFICR, HEEMY
#cbs = [];
constructor (num) {
// HEHRIE/GHIZER

this.res = num;

// outputht, #i77, HBEEME
#add (num) {
this.res += num;

console. log(this.res);

// outputht, #77, HEEE
#multipy (num) {
this.res *= num;

console. log(this.res)

add (num) {

// 1EICREBEE#AI— T addEfZBIREICR
/) T EDlazy B3R, FrLOR B EEICRIEEGHIZER, MEIDRT — TR
this.#cbs.push({
type: 'function',
params: num,
fn: this.#add
)

return this;

}
multipy (num) {

// HladdREg[aFE

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
4
75
76
7
78
79
80

this.#cbs.push({
type: 'function',
params: num,
fn: this.#multipy
1)

return this;

top (fn) {

// IERFEBEAITHIEIE

this.#cbs.push({
type: 'callback',
fn: fn

)

return this;

}
delay (time) {

// Eldelay 2R
this.#cbs.push({
type: 'delay',

// BEEBEFoutputiBHEBIAEIHER timefI3E, FIFE 7 Promises L]
fn: () = {
return new Promise(resolve => {
console.log (" HERFS${time}ms) ;
setTimeout(() => {
resolve();
}, time);
1)

i)

return this;

/) RIBIFRE, XD #cbsHFTIHIEE, AIEHITEIBIIRIE
/) FAEEFFHERRINE, @EH Tasync/await, FriloutputfIiB[EIESRZEpromiseX TR,

ATV

// WRFBLHoutputhIiELiBH, #HEforEmREETEEEE I E promise. thenfy Tzt
async output() {
let cbs = this.#cbs;
for(let i = 0, 1 = cbs.length; i < 1; i++) {
const cb = cbs[i];

let type = cb.type;
if (type === 'function') {

cb.fn.call(this, cb.params);

81 else if(type === 'callback') {
82 cb.fn.call(this, this.res);
83 }

84 else if(type === 'delay') {

85 await cb.fn();

86 }

87 }

88

89 /) RITEREBST #cbs, TFXEiFMHoutputhy, [ERBHEIMLEEIIEE
90 this.#cbs = [];

91 }

92 }

93 function lazy(num) {

94 return new Lazy(num);

95 1}

96

97 const lazyFun = lazy(2).add(2).top(console.log) .delay(1000) .multipy(3)
98 console.log('start');

99 console.log('&ERF1000ms");

100 setTimeout(() => {

101 lazyFun.output();

102 }, 1000);

EdE e 4

27L&, FEICIZ

1 function curry(fn, args) {

2 let length = fn.length;

3 args = args || [];

4

5 return function() {

6 let subArgs = args.slice(0);

7 subArgs = subArgs.concat(arguments);
8 if(subArgs.length >= length) {

9 return fn.apply(this, subArgs);

10 } else {

11 return curry.call(this, fn, subArgs);
12 1

13 }

14 }

15

16 // FIFERFHI 0
17 function curry(func, arity = func.length) {
18 function generateCurried(preArgs) {

19 return function curried(nextArgs) {

20 const args = [...preArgs, ...nextArgs];
21 if(args.length >= arity) {
22 return func(...args);
23 } else {
24 return generateCurried(args);
25 }
26 }
27 1
28 return generateCurried([]);
29 1}
es6SLM A

1 // es6L
2 function curry(fn, ...args) {
3 return fn.length <= args.length ? fn(...args) : curry.bind(null, fn,

...args);
}
5
lazy-load3EIR

imgirE IIAZ M E R EZRMB M loading="lazy", ARMNMBERBAXMNEMY, B@ETEHF LT
BARILIMENIE, Bl LIERIntersectionObserversRSZI, MaE EStLSIFscroliFREZ

1 const imgs = document.getElementsByTagName('img');

2 const viewHeight = window.innerHeight || document.documentElement.clientHeight;
3

4 let num = 0;

5

6 function lazylLoad() {
7 for (let i = 0; i < dimgs.length; i++) {

8 let distance = viewHeight - dimgs[i].getBoundingClientRect().top;
9 if(distance >= 0) {

10 imgs[i].src = imgs[i].getAttribute('data-src');

11 num = i+1;

12 }

13 }

14 }

15 window.addEventListener('scroll', lazylLoad, false);

IR SR EEH dom

LI TEM domaEIELSEYY, NESEIERNEMdom, EFEBirdomix

1 /) HFEBIEHE
2 let demoNode = ({

3 tagName: 'ul',

4 props: {'class': 'list'},

5 children: [

6 ({tagName: '1i', children: ['douyin']}),
7 ({tagName: '1li', children: ['toutiao']})
8]

9 1;

ME—"Prenderi&$, EdemoNodeX KRB LU TFdom

<ul class="T1ist">
douyin</Lli>
toutiao
<Jul>

A W N B

BB, BT REEIEESEDOMTI R

1 function Element({tagName, props, children}){

2 /) FUBTTE E R %

3 if (! (this instanceof Element)){

4 return new Element({tagName, props, children})
5 }

6 this.tagName = tagName;

7 this.props = props || {};

8 this.children = children || [];

9 }

10

11 Element.prototype.render = function(){

12 var el = document.createElement(this.tagName),
13 props = this.props,

14 propName,

15 propValue;

16 for (propName in props){

17 propValue = props[propName];

18 el.setAttribute(propName, propValue);

19 }

20 this.children. forEach(function(child){

21 var childEl = null;

22 if(child instanceof Element){

23 childEl = child.render();

24 telse{

25 childEl = document.createTextNode(child);
26 }

27 el.appendChild(childEl);

28 1

29 return el;

30 };

31

32 // AT

33 var elem = Element({

34 tagName: 'ul',

35 props: {'class': 'list'},

36 children: [

37 Element({tagName: 'li', children: ['iteml']}),
38 Element({tagName: 'li', children: ['item2']})
39]

40 1);

41 document.querySelector('body') .appendChild(elem.render());

SCIISWR #1!
SWR XMNEF¥R BT stale-while-revalidate: —#E HTTP RFC 5861 #BJ HTTP 1R Bl

1 const cache = new Map();

2

3 async function swr(cacheKey, fetcher, cacheTime) {

4 let data = cache.get(cacheKey) || { value: null, time: 0, promise: null };
5 cache.set(cacheKey, data);

6

7 // LR

8 const isStaled = Date.now() - data.time > cacheTime;
9 if (isStaled && !data.promise) {

10 data.promise = fetcher()

11 .then((val) => {

12 data.value = val;

13 data.time = Date.now();

14 D)

15 .catch((err) => {

16 console.log(err);

17 1)

18 finally(() => {

https://link.juejin.cn/?target=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5861

19 data.promise = null;

20 1)

21}

22

23 if (data.promise && !data.value) await data.promise;
24 return data.value;

25 }

26

27 const data
28 const data

await fetcher();

await swr('cache-key', fetcher, 3000);

EP—PHRIT—REYERER

1 // HE

2 function once(fn) {

3 let called = false;

4 return function _once() {
5 if (called) {

6 return _once.value;

7 }

8 called = true;

9 _once.value = fn.apply(this, arguments);
10}

11 }

12

13 //ES6 BITT/EIE Reflect API JFEENXMEREAIITH
14 Reflect.defineProperty(Function.prototype, 'once', {
15 value () {

16 return once(this);
17 1,
18 configurable: true,
19 1)
20

LRU EE3L

LRU (Leastrecently used, sifisx/MER) BARIBZUENG LR RREITEAKE, HZOR
BE “NRHBIEFIOWIFIE, BBARRBIFRN/LRZLES .

1 class LRUCahe {

2 constructor (capacity) {

3 this.cache = new Map();

4 this.capacity = capacity;

5 }

6

7 get(key) {

8 if (this.cache.has(key)) {

9 const temp = this.cache.get(key);
10 this.cache.delete(key);

11 this.cache.set(key, temp);

12 return temp;

13 }

14 return undefined;

15 }

16

17 set(key, value) {

18 if (this.cache.has(key)) {

19 this.cache.delete(key);

20 } else if (this.cache.size >= this.capacity) {
21 // map.keys() =iR[0] Iterator XI5
22 this.cache.delete(this.cache.keys().next().value);
23 }

24 this.cache.set(key, value);

25 }

26 1}

£%-1TiH
2HEFEEMRENTAE. MEBS—NE =G RTHSEIRREEEE, MEBEH- TR,

class EventEmitter {

constructor() {

// handlers@—T\map, HFFEFEHS[EEZEIFIXTZXKZR
this.handlers = {}

// onJ A FLREFMHIENTE, EETEINEMSFEITRHENSEH
on(eventName, cb) {

1
2
3
4
5 1}
6
7
8
9 /) FERE—THIRE S B R BB TR E A

10 if (!this.handlers[eventName]) {

11 /) WIRRE, HBABLIIE— 1Tl TERE AT
12 this.handlers[eventName] = []

13 }

14

15 // TEEIEEREAEN B F7FE 8w U R 2 A 51 B 25
16 this.handlers[eventName].push(cb)

17}

18

19 // emitIZBTHREEN, EERREMEMBITERBMNSIEANSE

20 emit(eventName, ...args) {

21 /) WEEIREHEL B BLITEREAT]

22 if (this.handlers[eventName]) {

23 /) XEFZEX] this.handlers[eventName] #—XEHEN, EEHAGEN T %8S
once KFELYUSITESTERBIFH9T 72 NG/ a] &k

24 const handlers = this.handlers[eventName].slice()

25 // WIRE, TEZET 1EFHEASERICTEEREL

26 handlers.forEach((callback) => {

27 callback(...args)

28 1)

29 }

30 }

31

32 /) BERTFHENESEREE[CFER 2
33 off(eventName, cb) {

34 const callbacks = this.handlers[eventName]
35 const index = callbacks.indexOf(cb)

36 if (dindex !== -1) {

37 callbacks.splice(index, 1)

38 }

39 }

40

41 /) NFEHEFMELLEITES

42 once(eventName, cb) {

43 // XTELEREATEZ, (ERMATTTEEE R BE
44 const wrapper = (...args) => {

45 cb(...args)

46 this.off(eventName, wrapper)

47 }

48 this.on(eventName, wrapper)

49 }

50 }

MEERN

const queuedObservers = new Set();

const observe = fn => queuedObservers.add(fn);

const observable = obj => new Proxy(obj, {set});

function set(target, key, value, receiver) {
const result = Reflect.set(target, key, value, receiver);
queuedObservers. forEach(observer => observer());

O© 00 N O U b W N B

return result;

10 }

B {HHETC
ZOE = BAEMProxyE = E

1 function getSingleInstance(func) {

2 let dinstance;

3 let handler = {

4 construct(target, args) {

5 if(!instance) instance = Reflect.construct(func, args);
6 return -instance;

7 }

8 }

9 return new Proxy(func, handler);

10 }

11

FREEE compose X

1 function compose(middleware) {

2 return function(context, next) {

3 let dindex = -1;

4 return dispatch(0);

5 function dispatch(i) {

6 // FATFRAITZRHFIEF

7 if(i <= index) return Promise.reject(new Error('next() called multiple

times'));
// BT
index = 1;

10 let fn = middle[i];

11 // X next2IMEBEI[E]E

12 if(i === middle.length) fn = next;
13 if(!fn) return Promsie.resolve();
14 try{

15 return Promise.resove(fn(context, dispatch.bind(null, i+1)));
16 }catch(err){

17 return Promise.reject(err);

18 }

19 }
20 }

21 }

B

SMEZIXERNR, IFmmEXPEINFEREEASBERET, WTFHENGRT, HEF
S B R ESS LR, LERREMBhcHIERT, —RE—EERNHIERIATEMEER, Fh
URIFIER 41212,

