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function getUrlByFetch() {
let idx = maxLoad;

function getContention(index) {
fetch(pics[index]).then(() => {
idx++;
if(idx < pics.length){
getContention(idx);
}
1)
}
function start() {
for (let i = 0; i < maxLoad; i++) {

getContention(i);

start();

wmHEIEFINpromiseRHiAE 2
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function taskPool() {
this.tasks = [];
this.pool = [];
this.max = 2;

taskPool.prototype.addTask = function(task) {
this.tasks.push(task);

this.run();

taskPool.prototype.run = function() {
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13 if(this.tasks.length === 0) {

14 return;

15 }

16 let min = Math.min(this.tasks.length, this.max - this.pool.length);
17 for(let i = 0; i<min;i++) {

18 const currTask = this.tasks.shift();

19 this.pool.push(currTask);

20 currTask().finally(() => {

21 this.pool.splice(this.pool.indexOf(currTask), 1);
22 this.run();

23 1)

24}

25 }

=¥ lazysE3UiA A: person.eat().sleep(2).eat()
REZHIMEGFENESREL K, REEFE—MESNYIE

function Person() {
this.queue = [];
this.lock = false;

Person.prototype.eat = function () {

this.queue.push(() => new Promise(resolve => { console.log('eat');
resolve(); 1));
// this.run();
9 return this;
10 }
11
12 Person.prototype.sleep = function(time, flag) {

(o¢]

13 this.queue.push(() => new Promise(resolve => {

14 setTimeout(() => {

15 console.log('sleep', flag);
16 resolve();

17 }, time x 1000)

18 1));

19 // this.run();

20 return this;

21 1

22

23 Person.prototype.run = async function() {
24 if(this.queue.length > 0 && !this.lock) {
25 this.lock = true;

26 const task = this.queue.shift();
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await task();
this.lock = false;
this.run();

const person = new Person();

person.eat().sleep(l, '1').eat().sleep(3, '2').eat().run();

class Lazy {
// REEFICR, HEEMY
#cbs = [];
constructor (num) {
// HEHRIE/GHIZER

this.res = num;

// outputht, #i77, HBEEME
#add (num) {
this.res += num;

console. log(this.res);

// outputht, #77, HEEE
#multipy (num) {
this.res *= num;

console. log(this.res)

add (num) {

// 1EICREBEE#AI— T addEfZBIREICR
/) T EDlazy B3R, FrLOR B EEICRIEEGHIZER, MEIDRT — TR
this.#cbs.push({
type: 'function',
params: num,
fn: this.#add
)

return this;

}
multipy (num) {

// HladdREg[aFE
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this.#cbs.push({
type: 'function',
params: num,
fn: this.#multipy
1)

return this;

top (fn) {

// IERFEBEAITHIEIE

this.#cbs.push({
type: 'callback',
fn: fn

)

return this;

}
delay (time) {

// Eldelay 2R
this.#cbs.push({
type: 'delay',

// BEEBEFoutputiBHEBIAEIHER timefI3E, FIFE 7 Promises L]
fn: () = {
return new Promise(resolve => {
console.log (" HERFS${time}ms ) ;
setTimeout(() => {
resolve();
}, time);
1)

i)

return this;

/) RIBIFRE, XD #cbsHFTIHIEE, AIEHITEIBIIRIE
/) FAEEFFHERRINE, @EH Tasync/await, FriloutputfIiB[EIESRZEpromiseX TR,

ATV

// WRFBLHoutputhIiELiBH, #HEforEmREETEEEE I E promise. thenfy Tzt
async output() {
let cbs = this.#cbs;
for(let i = 0, 1 = cbs.length; i < 1; i++) {
const cb = cbs[i];

let type = cb.type;
if (type === 'function') {

cb.fn.call(this, cb.params);



81 else if(type === 'callback') {
82 cb.fn.call(this, this.res);
83 }

84 else if(type === 'delay') {

85 await cb.fn();

86 }

87 }

88

89 /) RITEREBST #cbs, TFXEiFMHoutputhy, [ERBHEIMLEEIIEE
90 this.#cbs = [];

91 }

92 }

93 function lazy(num) {

94 return new Lazy(num);

95 1}

96

97 const lazyFun = lazy(2).add(2).top(console.log) .delay(1000) .multipy(3)
98 console.log('start');

99 console.log('&ERF1000ms");

100 setTimeout(() => {

101 lazyFun.output();

102 }, 1000);
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1 function curry(fn, args) {

2 let length = fn.length;

3 args = args || [];

4

5 return function() {

6 let subArgs = args.slice(0);

7 subArgs = subArgs.concat(arguments);
8 if(subArgs.length >= length) {

9 return fn.apply(this, subArgs);

10 } else {

11 return curry.call(this, fn, subArgs);
12 1

13 }

14 }

15

16 // FIFERFHI 0
17 function curry(func, arity = func.length) {
18 function generateCurried(preArgs) {



19 return function curried(nextArgs) {

20 const args = [...preArgs, ...nextArgs];
21 if(args.length >= arity) {
22 return func(...args);
23 } else {
24 return generateCurried(args);
25 }
26 }
27 1
28 return generateCurried([]);
29 1}
es6SLM A

1 // es6L
2 function curry(fn, ...args) {
3 return fn.length <= args.length ? fn(...args) : curry.bind(null, fn,

...args);
}
5
lazy-load3EIR

imgirE IIAZ M E R EZRMB M loading="lazy", ARMNMBERBAXMNEMY, B@ETEHF LT
BARILIMENIE, Bl LIERIntersectionObserversRSZI, MaE EStLSIFscroliFREZ

1 const imgs = document.getElementsByTagName('img');

2 const viewHeight = window.innerHeight || document.documentElement.clientHeight;
3

4 let num = 0;

5

6 function lazylLoad() {
7 for (let i = 0; i < dimgs.length; i++) {

8 let distance = viewHeight - dimgs[i].getBoundingClientRect().top;
9 if(distance >= 0) {

10 imgs[i].src = imgs[i].getAttribute('data-src');

11 num = i+1;

12 }

13 }

14 }

15 window.addEventListener('scroll', lazylLoad, false);
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LI TEM domaEIELSEYY, NESEIERNEMdom, EFEBirdomix

1 /) HFEBIEHE
2 let demoNode = ({

3 tagName: 'ul',

4 props: {'class': 'list'},

5 children: [

6 ({tagName: '1i', children: ['douyin']}),
7 ({tagName: '1li', children: ['toutiao']})
8 ]

9 1;

ME—"Prenderi&$, EdemoNodeX KRB LU TFdom

<ul class="T1ist">
<li>douyin</Lli>
<li>toutiao</li>
<Jul>
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1 function Element({tagName, props, children}){

2 /) FUBTTE E R %

3 if (! (this instanceof Element)){

4 return new Element({tagName, props, children})
5 }

6 this.tagName = tagName;

7 this.props = props || {};

8 this.children = children || [];

9 }

10

11 Element.prototype.render = function(){

12 var el = document.createElement(this.tagName),
13 props = this.props,

14 propName,

15 propValue;

16 for (propName in props){

17 propValue = props[propName];

18 el.setAttribute(propName, propValue);

19 }



20 this.children. forEach(function(child){

21 var childEl = null;

22 if(child instanceof Element){

23 childEl = child.render();

24 telse{

25 childEl = document.createTextNode(child);
26 }

27 el.appendChild(childEl);

28 1

29 return el;

30 };

31

32 // AT

33 var elem = Element({

34 tagName: 'ul',

35 props: {'class': 'list'},

36 children: [

37 Element({tagName: 'li', children: ['iteml']}),
38 Element({tagName: 'li', children: ['item2']})
39 ]

40 1);

41 document.querySelector('body') .appendChild(elem.render());

SCIISWR #1!
SWR XMNEF¥R BT stale-while-revalidate: —#E HTTP RFC 5861 #BJ HTTP 1R Bl

1 const cache = new Map();

2

3 async function swr(cacheKey, fetcher, cacheTime) {

4 let data = cache.get(cacheKey) || { value: null, time: 0, promise: null };
5 cache.set(cacheKey, data);

6

7 // LR

8 const isStaled = Date.now() - data.time > cacheTime;
9 if (isStaled && !data.promise) {

10 data.promise = fetcher()

11 .then((val) => {

12 data.value = val;

13 data.time = Date.now();

14 D)

15 .catch((err) => {

16 console.log(err);

17 1)

18 finally(() => {


https://link.juejin.cn/?target=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5861

19 data.promise = null;

20 1)

21}

22

23 if (data.promise && !data.value) await data.promise;
24 return data.value;

25 }

26

27 const data
28 const data

await fetcher();

await swr('cache-key', fetcher, 3000);

EP—PHRIT—REYERER

1 // HE

2 function once(fn) {

3 let called = false;

4 return function _once() {
5 if (called) {

6 return _once.value;

7 }

8 called = true;

9 _once.value = fn.apply(this, arguments);
10}

11 }

12

13 //ES6 BITT/EIE Reflect API JFEENXMEREAIITH
14 Reflect.defineProperty(Function.prototype, 'once', {
15 value () {

16 return once(this);
17 1,
18 configurable: true,
19 1)
20

LRU EE3L

LRU (Leastrecently used, sifisx/MER) BARIBZUENG LR RREITEAKE, HZOR
BE “NRHBIEFIOWIFIE, BBARRBIFRN/LRZLES .

1 class LRUCahe {

2 constructor (capacity) {

3 this.cache = new Map();

4 this.capacity = capacity;



5 }

6

7 get(key) {

8 if (this.cache.has(key)) {

9 const temp = this.cache.get(key);
10 this.cache.delete(key);

11 this.cache.set(key, temp);

12 return temp;

13 }

14 return undefined;

15 }

16

17 set(key, value) {

18 if (this.cache.has(key)) {

19 this.cache.delete(key);

20 } else if (this.cache.size >= this.capacity) {
21 // map.keys() =iR[0] Iterator XI5
22 this.cache.delete(this.cache.keys().next().value);
23 }

24 this.cache.set(key, value);

25 }

26 1}

£%-1TiH
2HEFEEMRENTAE. MEBS—NE =G RTHSEIRREEEE, MEBEH- TR,

class EventEmitter {

constructor() {

// handlers@—T\map, HFFEFEHS[EEZEIFIXTZXKZR
this.handlers = {}

// onJ A FLREFMHIENTE, EETEINEMSFEITRHENSEH
on(eventName, cb) {

1
2
3
4
5 1}
6
7
8
9 /) FERE—THIRE S B R BB TR E A

10 if (!this.handlers[eventName]) {

11 /) WIRRE, HBABLIIE— 1Tl TERE AT
12 this.handlers[eventName] = []

13 }

14

15 // TEEIEEREAEN B F7FE 8w U R 2 A 51 B 25
16 this.handlers[eventName].push(cb)

17}

18



19  // emitIZBTHREEN, EERREMEMBITERBMNSIEANSE

20 emit(eventName, ...args) {

21 /) WEEIREHEL B BLITEREAT]

22 if (this.handlers[eventName]) {

23 /) XEFZEX] this.handlers[eventName] #—XEHEN, EEHAGEN T %8S
once KFELYUSITESTERBIFH9T 72 NG/ a] &k

24 const handlers = this.handlers[eventName].slice()

25 // WIRE, TEZET 1EFHEASERICTEEREL

26 handlers.forEach((callback) => {

27 callback(...args)

28 1)

29 }

30 }

31

32 /) BERTFHENESEREE[CFER 2
33 off(eventName, cb) {

34 const callbacks = this.handlers[eventName]
35 const index = callbacks.indexOf(cb)

36 if (dindex !== -1) {

37 callbacks.splice(index, 1)

38 }

39 }

40

41 /) NFEHEFMELLEITES

42 once(eventName, cb) {

43 // XTELEREATEZ, (ERMATTTEEE R BE
44 const wrapper = (...args) => {

45 cb(...args)

46 this.off(eventName, wrapper)

47 }

48 this.on(eventName, wrapper)

49 }

50 }

MEERN

const queuedObservers = new Set();

const observe = fn => queuedObservers.add(fn);

const observable = obj => new Proxy(obj, {set});

function set(target, key, value, receiver) {
const result = Reflect.set(target, key, value, receiver);
queuedObservers. forEach(observer => observer());

O© 00 N O U b W N B

return result;



10 }

B {HHETC
ZOE = BAEMProxyE = E

1 function getSingleInstance(func) {

2 let dinstance;

3 let handler = {

4 construct(target, args) {

5 if(!instance) instance = Reflect.construct(func, args);
6 return -instance;

7 }

8 }

9 return new Proxy(func, handler);

10 }

11

FREEE compose X

1 function compose(middleware) {

2 return function(context, next) {

3 let dindex = -1;

4 return dispatch(0);

5 function dispatch(i) {

6 // FATFRAITZRHFIEF

7 if(i <= index) return Promise.reject(new Error('next() called multiple

times'));
// BT
index = 1;

10 let fn = middle[i];

11 // X next2IMEBEI[E]E

12 if(i === middle.length) fn = next;
13 if(!fn) return Promsie.resolve();
14 try{

15 return Promise.resove(fn(context, dispatch.bind(null, i+1)));
16 }catch(err){

17 return Promise.reject(err);

18 }

19 }
20 }

21 }
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