
前端面试必须掌握的手写题：进阶篇​

请求并发控制

多次遇到的题目，而且有很多变种，主要就是同步改异步

function getUrlByFetch() {
 let idx = maxLoad;

 function getContention(index) {
 fetch(pics[index]).then(() => {
 idx++;
 if(idx < pics.length){
 getContention(idx);
 }
 });
 }
 function start() {
 for (let i = 0; i < maxLoad; i++) {
 getContention(i);
 }
 }
 start();
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

🔥带并发限制的promise异步调度器​

上一题的其中一个变化

function taskPool() {
 this.tasks = [];
 this.pool = [];
 this.max = 2;
}

taskPool.prototype.addTask = function(task) {
 this.tasks.push(task);
 this.run();
}

taskPool.prototype.run = function() {

1
2
3
4
5
6
7
8
9
10
11
12

 if(this.tasks.length === 0) {
 return;
 }
 let min = Math.min(this.tasks.length, this.max - this.pool.length);
 for(let i = 0; i<min;i++) {
 const currTask = this.tasks.shift();
 this.pool.push(currTask);
 currTask().finally(() => {
 this.pool.splice(this.pool.indexOf(currTask), 1);
 this.run();
 })
 }
}

13
14
15
16
17
18
19
20
21
22
23
24
25

🔥🔥🔥实现lazy链式调用: person.eat().sleep(2).eat()​

解法其实就是将所有的任务异步化，然后存到一个任务队列里

function Person() {
 this.queue = [];
 this.lock = false;
}

Person.prototype.eat = function () {
 this.queue.push(() => new Promise(resolve => { console.log('eat');
resolve(); }));
 // this.run();
 return this;
}

Person.prototype.sleep = function(time, flag) {
 this.queue.push(() => new Promise(resolve => {
 setTimeout(() => {
 console.log('sleep', flag);
 resolve();
 }, time * 1000)
 }));
 // this.run();
 return this;
}

Person.prototype.run = async function() {
 if(this.queue.length > 0 && !this.lock) {
 this.lock = true;
 const task = this.queue.shift();

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

 await task();
 this.lock = false;
 this.run();
 }
}

const person = new Person();
person.eat().sleep(1, '1').eat().sleep(3, '2').eat().run();

27
28
29
30
31
32
33
34

方法二

class Lazy {
 // 函数调用记录，私有属性​
 #cbs = [];
 constructor(num) {
 // 当前操作后的结果​
 this.res = num;
 }

 // output时，执行，私有属性​
 #add(num) {
 this.res += num;
 console.log(this.res);
 }

 // output时，执行，私有属性​
 #multipy(num) {
 this.res *= num;
 console.log(this.res)
 }

 add(num) {

 // 往记录器里面添加一个add函数的操作记录​
 // 为了实现lazy的效果，所以没有直接记录操作后的结果，而是记录了一个函数​
 this.#cbs.push({
 type: 'function',
 params: num,
 fn: this.#add
 })
 return this;
 }
 multipy(num) {

 // 和add函数同理​

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

 this.#cbs.push({
 type: 'function',
 params: num,
 fn: this.#multipy
 })
 return this;
 }
 top (fn) {

 // 记录需要执行的回调​
 this.#cbs.push({
 type: 'callback',
 fn: fn
 })
 return this;
 }
 delay (time) {

 // 增加delay的记录​
 this.#cbs.push({
 type: 'delay',

 // 因为需要在output调用是再做到延迟time的效果，利用了Promise来实现​
 fn: () => {
 return new Promise(resolve => {
 console.log(`等待${time}ms`);
 setTimeout(() => {
 resolve();
 }, time);
 })
 }
 })
 return this;
 }

 // 关键性函数，区分#cbs中每项的类型，然后执行不同的操作​
 // 因为需要用到延迟的效果，使用了async/await，所以output的返回值会是promise对象，
无法链式调用​
 // 如果需实现output的链式调用，把for里面函数的调用全部放到promise.then的方式​
 async output() {
 let cbs = this.#cbs;
 for(let i = 0, l = cbs.length; i < l; i++) {
 const cb = cbs[i];
 let type = cb.type;
 if (type === 'function') {
 cb.fn.call(this, cb.params);
 }

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

72
73
74
75
76
77
78
79
80

 else if(type === 'callback') {
 cb.fn.call(this, this.res);
 }
 else if(type === 'delay') {
 await cb.fn();
 }
 }

 // 执行完成后清空 #cbs，下次再调用output的，只需再输出本轮的结果​
 this.#cbs = [];
 }
}
function lazy(num) {
 return new Lazy(num);
}

const lazyFun = lazy(2).add(2).top(console.log).delay(1000).multipy(3)
console.log('start');
console.log('等待1000ms');
setTimeout(() => {
 lazyFun.output();
}, 1000);

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

🔥函数柯里化​

毫无疑问，需要记忆

function curry(fn, args) {
 let length = fn.length;
 args = args || [];

 return function() {
 let subArgs = args.slice(0);
 subArgs = subArgs.concat(arguments);
 if(subArgs.length >= length) {
 return fn.apply(this, subArgs);
 } else {
 return curry.call(this, fn, subArgs);
 }
 }
}

// 更好理解的方式​
function curry(func, arity = func.length) {
 function generateCurried(preArgs) {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 return function curried(nextArgs) {
 const args = [...preArgs, ...nextArgs];
 if(args.length >= arity) {
 return func(...args);
 } else {
 return generateCurried(args);
 }
 }
 }
 return generateCurried([]);
}

19
20
21
22
23
24
25
26
27
28
29

es6实现方式​

// es6实现​
function curry(fn, ...args) {
 return fn.length <= args.length ? fn(...args) : curry.bind(null, fn,
...args);
}

1
2
3

4
5

lazy-load实现​

img标签默认支持懒加载只需要添加属性 loading="lazy"，然后如果不用这个属性，想通过事件监听的

方式来实现的话，也可以使用IntersectionObserver来实现，性能上会比监听scroll好很多​

const imgs = document.getElementsByTagName('img');
const viewHeight = window.innerHeight || document.documentElement.clientHeight;

let num = 0;

function lazyLoad() {
 for (let i = 0; i < imgs.length; i++) {
 let distance = viewHeight - imgs[i].getBoundingClientRect().top;
 if(distance >= 0) {
 imgs[i].src = imgs[i].getAttribute('data-src');
 num = i+1;
 }
 }
}
window.addEventListener('scroll', lazyLoad, false);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

实现简单的虚拟dom​

给出如下虚拟dom的数据结构，如何实现简单的虚拟dom，渲染到目标dom树​

// 样例数据​
let demoNode = ({
 tagName: 'ul',
 props: {'class': 'list'},
 children: [
 ({tagName: 'li', children: ['douyin']}),
 ({tagName: 'li', children: ['toutiao']})
]
});

1
2
3
4
5
6
7
8
9

构建一个render函数，将demoNode对象渲染为以下dom​

<ul class="list">
 douyin
 toutiao

1
2
3
4

通过遍历，逐个节点地创建真实DOM节点​

function Element({tagName, props, children}){
 // 判断必须使用构造函数​
 if(!(this instanceof Element)){
 return new Element({tagName, props, children})
 }
 this.tagName = tagName;
 this.props = props || {};
 this.children = children || [];
}

Element.prototype.render = function(){
 var el = document.createElement(this.tagName),
 props = this.props,
 propName,
 propValue;
 for(propName in props){
 propValue = props[propName];
 el.setAttribute(propName, propValue);
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

 this.children.forEach(function(child){
 var childEl = null;
 if(child instanceof Element){
 childEl = child.render();
 }else{
 childEl = document.createTextNode(child);
 }
 el.appendChild(childEl);
 });
 return el;
};

// 执行​
var elem = Element({
 tagName: 'ul',
 props: {'class': 'list'},
 children: [
 Element({tagName: 'li', children: ['item1']}),
 Element({tagName: 'li', children: ['item2']})
]
});
document.querySelector('body').appendChild(elem.render());

20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

实现SWR 机制​

SWR 这个名字来自于 stale-while-revalidate：一种由 HTTP RFC 5861 推广的 HTTP 缓存失效策略​

const cache = new Map();

async function swr(cacheKey, fetcher, cacheTime) {
 let data = cache.get(cacheKey) || { value: null, time: 0, promise: null };
 cache.set(cacheKey, data);

 // 是否过期​
 const isStaled = Date.now() - data.time > cacheTime;
 if (isStaled && !data.promise) {
 data.promise = fetcher()
 .then((val) => {
 data.value = val;
 data.time = Date.now();
 })
 .catch((err) => {
 console.log(err);
 })
 .finally(() => {

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

https://link.juejin.cn/?target=https%3A%2F%2Ftools.ietf.org%2Fhtml%2Frfc5861

 data.promise = null;
 });
 }

 if (data.promise && !data.value) await data.promise;
 return data.value;
}

const data = await fetcher();
const data = await swr('cache-key', fetcher, 3000);

19
20
21
22
23
24
25
26
27
28

实现一个只执行一次的函数

// 闭包​
function once(fn) {
 let called = false;
 return function _once() {
 if (called) {
 return _once.value;
 }
 called = true;
 _once.value = fn.apply(this, arguments);
 }
}

//ES6 的元编程 Reflect API 将其定义为函数的行为​
Reflect.defineProperty(Function.prototype, 'once', {
 value () {
 return once(this);
 },
 configurable: true,
})

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

LRU 算法实现​

LRU（Least recently used，最近最少使用）算法根据数据的历史访问记录来进行淘汰数据，其核心思

想是“如果数据最近被访问过，那么将来被访问的几率也更高”。

class LRUCahe {
 constructor(capacity) {
 this.cache = new Map();
 this.capacity = capacity;

1
2
3
4

 }

 get(key) {
 if (this.cache.has(key)) {
 const temp = this.cache.get(key);
 this.cache.delete(key);
 this.cache.set(key, temp);
 return temp;
 }
 return undefined;
 }

 set(key, value) {
 if (this.cache.has(key)) {
 this.cache.delete(key);
 } else if (this.cache.size >= this.capacity) {
 // map.keys() 会返回 Iterator 对象​
 this.cache.delete(this.cache.keys().next().value);
 }
 this.cache.set(key, value);
 }
}

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

🔥发布-订阅​

发布者不直接触及到订阅者、而是由统一的第三方来完成实际的通信的操作，叫做发布-订阅模式。​

class EventEmitter {
 constructor() {
 // handlers是一个map，用于存储事件与回调之间的对应关系​
 this.handlers = {}
 }

 // on方法用于安装事件监听器，它接受目标事件名和回调函数作为参数​
 on(eventName, cb) {
 // 先检查一下目标事件名有没有对应的监听函数队列​
 if (!this.handlers[eventName]) {
 // 如果没有，那么首先初始化一个监听函数队列​
 this.handlers[eventName] = []
 }

 // 把回调函数推入目标事件的监听函数队列里去​
 this.handlers[eventName].push(cb)
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

 // emit方法用于触发目标事件，它接受事件名和监听函数入参作为参数​
 emit(eventName, ...args) {
 // 检查目标事件是否有监听函数队列​
 if (this.handlers[eventName]) {
 // 这里需要对 this.handlers[eventName] 做一次浅拷贝，主要目的是为了避免通过
once 安装的监听器在移除的过程中出现顺序问题​
 const handlers = this.handlers[eventName].slice()
 // 如果有，则逐个调用队列里的回调函数​
 handlers.forEach((callback) => {
 callback(...args)
 })
 }
 }

 // 移除某个事件回调队列里的指定回调函数​
 off(eventName, cb) {
 const callbacks = this.handlers[eventName]
 const index = callbacks.indexOf(cb)
 if (index !== -1) {
 callbacks.splice(index, 1)
 }
 }

 // 为事件注册单次监听器​
 once(eventName, cb) {
 // 对回调函数进行包装，使其执行完毕自动被移除​
 const wrapper = (...args) => {
 cb(...args)
 this.off(eventName, wrapper)
 }
 this.on(eventName, wrapper)
 }
}

19
20
21
22
23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50

观察者模式

const queuedObservers = new Set();

const observe = fn => queuedObservers.add(fn);
const observable = obj => new Proxy(obj, {set});

function set(target, key, value, receiver) {
 const result = Reflect.set(target, key, value, receiver);
 queuedObservers.forEach(observer => observer());
 return result;

1
2
3
4
5
6
7
8
9

}10

单例模式

核心要点: 用闭包和Proxy属性拦截​

function getSingleInstance(func) {
 let instance;
 let handler = {
 construct(target, args) {
 if(!instance) instance = Reflect.construct(func, args);
 return instance;
 }
 }
 return new Proxy(func, handler);
}

1
2
3
4
5
6
7
8
9
10
11

洋葱圈模型compose函数​

function compose(middleware) {
 return function(context, next) {
 let index = -1;
 return dispatch(0);
 function dispatch(i) {
 // 不允许执行多次中间件​
 if(i <= index) return Promise.reject(new Error('next() called multiple
times'));
 // 更新游标​
 index = i;
 let fn = middle[i];
 // 这个next是外部的回调​
 if(i === middle.length) fn = next;
 if(!fn) return Promsie.resolve();
 try{
 return Promise.resove(fn(context, dispatch.bind(null, i+1)));
 }catch(err){
 return Promise.reject(err);
 }
 }
 }
}

1
2
3
4
5
6
7

8
9
10
11
12
13
14
15
16
17
18
19
20
21

总结

当你看到这里的时候，几乎前端面试中常见的手写题目基本都覆盖到了，对于社招的场景下，其实手

写题的题目是越来越务实的，尤其是真的有hc的情况下，一般出一些常见的场景题的可能性更大，所

以最好理解➕记忆，​

