
Vue3.0面试题汇总​

一、Options Api与Composition Api的区别？​

1、 Options Api ：选项API，即以vue为后缀的文件，通过定义 methods ， computed ，
watch ， data 等属性与方法，共同处理页面逻辑。
 用组件的选项 (data、computed、methods、watch) 组织逻辑在大多数情况下都有效。然而，
当组件变得复杂，导致对应属性的列表也会增长，这可能会导致组件难以阅读和理解。

2、 Composition API 中，组件根据逻辑功能来组织的，一个功能所定义的所有 API 会放在一
起（ 更加的 高内聚，低耦合 ）。​

3、 Composition Api 相对 Options Api 的两大优点：​

• 逻辑组织

◦ Options Api 在处理一个大型的组件时，内部的逻辑点容易碎片化，可能同时存在于
method,computed,watch 等API中，我们必须不断地“跳转”相关代码的选项块，这种碎
片化使得理解和维护复杂组件变得困难。

◦ Composition Api 将某个逻辑关注点相关的代码全都放在一个函数里，这样，当需要修改
一个功能时，就不再需要在文件中跳来跳去。

• 逻辑复用

◦ 在 vue2.0 中，当混入多个 mixin 会存在两个非常明显的问题：命名冲突、数据来源不清晰

◦ 而 Composition Api 可以通过编写多个 hooks函数 就很好的解决了

总结

• 在逻辑组织和逻辑复用方面， Composition API 是优于 Options API

• 因为 Composition API 几乎是 函数 ，会有更好的 类型推断 。

• Composition API 对 tree-shaking 友好， 代码也更容易压缩 ​

• Composition API 中见不到 this 的使用，减少了 this 指向不明的情况

• 如果是小型组件，可以继续使用 Options API ，也是十分友好的

二、Vue3.0性能提升主要是通过哪几方面体现的？​

1、编译阶段优化​

回顾 Vue2 ，我们知道每个组件实例都对应一个 watcher 实例 ，它会在组件渲染的过程中把用到
的数据 property 记录为依赖，当依赖发生改变，触发 setter ，则会通知 watcher ，从而使关

联的组件重新渲染。

因此， Vue3 在编译阶段，做了进一步优化：

① diff算法优化 ​

vue3 在 diff 算法中相比 vue2 增加了 静态标记 ，其作用是为了会发生变化的地方添加一个
flag标记 ，下次发生变化的时候 直接 找该地方进行比较。

② 静态提升 ​

Vue3中对 不参与更新 的元素，会做静态提升， 只会被创建一次 ，在渲染时直接复用。免去了重复的

创建操作，优化内存。

没做静态提升之前，未参与更新的元素也在 render函数 内部，会重复 创建阶段 。
 做了静态提升后，未参与更新的元素，被 放置在render 函数外 ，每次渲染的时候只要 取出 即
可。同时该元素会被打上 静态标记值为-1 ，特殊标志是 负整数 表示永远不会用于 Diff 。​

③ 事件监听缓存 ​

默认情况下绑定事件行为会被视为动态绑定（ 没开启事件监听器缓存 ），所以 每次 都会去追踪它的

变化。 开启事件侦听器缓存 后，没有了静态标记。也就是说下次 diff算法 的时候 直接使用 。

④ SSR优化 ​

当静态内容大到一定量级时候，会用 createStaticVNode 方法在客户端去生成一个 static
node ，这些 静态node ，会被直接 innerHtml ，就不需要创建对象，然后根据对象渲染。

2、源码体积​

相比 Vue2 ， Vue3 整体体积 变小 了，除了移出一些 不常用的API ，最重要的是 Tree
shanking 。

任何一个函数，如 ref、reavtived、computed 等，仅仅在 用到 的时候才 打包 ， 没用到 的模
块都 被摇掉 ，打包的整体体积 变小 。

3、响应式系统​

vue2 中采用 defineProperty 来劫持整个对象，然后进行深度遍历所有属性，给 每个属性 添
加 getter和setter ，实现响应式。

vue3 采用 proxy 重写了响应式系统，因为 proxy 可以对 整个对象进行监听 ，所以不需要深度遍
历。

• 可以监听动态属性的添加

• 可以监听到数组的索引和数组length属性​

• 可以监听删除属性

三、Vue3.0里为什么要用 Proxy API 替代 defineProperty API ？​

1、 vue2 中采用 defineProperty 来劫持整个对象，然后进行深度遍历所有属性，给每个属性添
加getter和setter，实现响应式。但是存在以下的问题：​

• 检测不到对象属性的添加和删除

• 数组API方法无法监听到​

• 需要对每个属性进行遍历监听，如果嵌套对象，需要深层监听，造成性能问题

2、proxy：监听是针对一个对象的，那么对这个对象的所有操作会进入监听操作。​

总结：

• Object.defineProperty只能遍历对象属性进行劫持​

• Proxy直接可以劫持整个对象，并返回一个新对象，我们可以只操作新的对象达到响应式目的​

• Proxy可以直接监听数组的变化（push、shift、splice）​

• Proxy有多达13种拦截方法,不限于apply、ownKeys、deleteProperty、has等等，这是
Object.defineProperty不具备的​

四、Vue3.0响应式原理​

vue3 响应式是使用 ES6 的 proxy 和 Reflect 相互配合实现数据响应式，解决了 vue2 中视图不能自动

更新的问题。

proxy 是深度监听，所以可以监听对象和数组内的任意元素，从而可以实现视图实时更新。​

详细的原理可查看vue3.0 响应式原理(超详细)​

总结响应式大致分为三个阶段:​

• 初始化阶段 ：初始化阶段通过组件初始化方法形成对应的 proxy对象 ，然后形成一个负责渲染
的 effect 。

• get依赖收集阶段 ：通过 解析template ，替换 真实data 属性，来触发 get ,然后通过
stack方法 ，通过 proxy对象 和 key 形成对应的 deps ，将负责渲染的 effect 存入
deps 。（这个过程还有其他的effect，比如watchEffect存入deps中 ）。​

• set派发更新阶段 ：当我们 this[key] = value 改变属性的时候，首先通过 trigger 方
法，通过 proxy对象 和 key 找到对应的 deps ，然后给 deps 分类分成 computedRunners
和 effect ,然后依次执行，如果需要 调度 的，直接放入调度。​

Proxy只会代理对象的第⼀层，那么Vue3⼜是怎样处理这个问题的呢？​

判断当前Reflect.get的返回值是否为Object，如果是则再通过 reactive ⽅法做代理， 这样就实现了深

度观测。

监测数组的时候可能触发多次get/set，那么如何防⽌触发多次呢？​

https://juejin.cn/post/6858899262596448270

我们可以判断key是否为当前被代理对象target⾃身属性，也可以判断旧值与新值是否相等，只有满⾜

以上两个条件之⼀时，才有可能执⾏trigger。​

五、说说Vue 3.0中Treeshaking特性？举例说明一下？​

1、是什么？​

• Tree shaking 是一种通过 清除多余代码 方式来优化项目 打包体积 的技术，专业术语叫
Dead code elimination

• 简单来讲，就是在保持代码 运行结果不变 的前提下，去除无用的代码

在 Vue2 中，无论我们使用什么功能，它们最终都会出现在生产代码中。主要原因是 Vue 实例在项
目中是单例的，捆绑程序无法检测到该对象的哪些属性在代码中被使用到。

而 Vue3 源码引入 tree shaking 特性，将全局 API 进行分块。如果您不使用其某些功能，它们
将不会包含在您的基础包中

2、如何做？​

Tree shaking 是基于 ES6 模板语法（ import 与 exports ），主要是借助 ES6 模块的 静态
编译 思想，在 编译时 就能确定模块的 依赖关系 ，以及 输入 和 输出 的变量。

Tree shaking 无非就是做了两件事：

• 编译阶段利用 ES6 Module 判断哪些模块已经加载

• 判断那些模块和变量未被使用或者引用，进而删除对应代码

3、作用（好处）?​

通过 Tree shaking ， Vue3 给我们带来的好处是：

• 减少程序体积（更小）

• 减少程序执行时间（更快）

• 便于将来对程序架构进行优化（更友好）

以下面试题汇总自「2022」打算跳槽涨薪，必问面试题及答案——VUE3 篇​

六、Vue3 新特性有哪些？​

1、性能提升​

• 响应式性能提升，由原来的 Object.defineProperty 改为基于 ES6 的 Proxy ，使其速度
更快

https://juejin.cn/post/7065467931752316959

• 重写了 Vdom (diff算法优化，增加静态标志)​

• 进行模板编译优化（静态提升，不参与更新的元素只被创建一次）

• 更加高效的组件初始化

2、更好的支持 typeScript ​

• Vue.js 2.x 选用 Flow 做类型检查，来避免一些因类型问题导致的错误，但是 Flow 对于一
些复杂场景类型的检查，支持得并不好。

• Vue.js 3.0 抛弃了 Flow ，使用 TypeScript 重构了整个项目​

• TypeScript 提供了更好的类型检查，能支持复杂的 类型推断 ​

3、新增 Composition API ​

Composition API 是 vue3 新增的功能，比 mixin 更强大。它可以把各个功能模块 独立 开
来，提高代码逻辑的可复用性，同时代码压缩性更强。

在 Vue3 中，定义 methods 、 watch 、 computed 、 data 数据等都放在了 setup() 函数
中。

setup() 函数会在 created() 生命周期之前执行。执行顺序为： beforeCreate > setup
> created

4、新增组件​

• Fragment 不再限制 template 只有一个根节点。​

• Teleport 传送门，允许我们将控制的内容传送到任意的 DOM 中。​

• Suspense 等待异步组件时渲染一些额外的内容，让应用有更好的用户体验。​

5、Tree-shaking：支持摇树优化​

摇树优化后会将不需要的模块修剪掉，真正需要的模块打到包内。优化后的项目体积只有原来的一

半，加载速度更快。

6、Custom Renderer API： 自定义渲染器​

实现 DOM 的方式进行 WebGL 编程。​

七、vue3 组合式API生命周期钩子函数有变化吗？​

setup 是围绕 beforeCreate 和 created 生命周期钩子运行的，所以不需要显示的定义它
们。其他的钩子都可以编写到 setup 内。​

值得注意的是 组合式API 中的钩子函数，通过在生命周期钩子前面加上 on 来访问组件的生命周期
钩子。需要注册，并且只能在 setup 期间同步使用，因为它们依赖于内部的全局状态来定位当前组
件实例。

下图是选项式API 和 组合式API 生命周期钩子对比：​

八、watch 和 watchEffect 的区别？​

watch 和 watchEffect 都是监听器， watchEffect 是一个副作用函数。它们之间的区别
有：

• watch ：既要指明监视的数据源，也要指明监视的回调。​

• 而 watchEffect 可以自动监听数据源作为依赖。不用指明监视哪个数据，监视的回调中用到哪
个数据，那就监视哪个数据。

• watch 可以访问 改变之前和之后 的值， watchEffect 只能获取 改变后 的值。​

• watch 运行的时候 不会立即执行 ，值改变后才会执行，而 watchEffect 运行后可 立即执
行 。这一点可以通过 watch 的配置项 immediate 改变。​

• watchEffect 有点像 computed ：​

◦ 但 computed 注重的计算出来的值（回调函数的返回值）， 所以必须要写返回值。​

◦ 而 watcheffect 注重的是过程（回调函数的函数体），所以不用写返回值。​

• watch 与 vue2.x 中 watch 配置功能一致，但也有两个小坑​

◦ 监视 reactive 定义的响应式数据时， oldValue 无法正确获取，强 制开启 了深度监视
（deep配置失效）​

◦ 监视 reactive 定义的响应式数据中 某个属性 时， deep配置有效 。​

let sum = ref(0)
let msg = ref('你好啊')
let person = reactive({
 name:'张三',
 age:18,
 job:{
 j1:{
 salary:20
 }
 }
})

//情况1：监视ref定义的响应式数据​
watch(sum,(newValue, oldValue)=>{
 console.log("sum变化了", newValue, oldValue),(immediate:true)
})
//情况2：监视多个ref定义的响应式数据​
watch([sum, msg],(newValue, oldValue)=>{
 console.log("sum或msg变化了", newValue, oldValue),(immediate:true)
})
//情况3：监视reactive定义的响应式数据​
//若watch监视的是reactive定义的响应式数据，则无法正确获得oldValue，且强制开启了深度监
视。​
watch(person,(newValue, oldValue)=>{
 console.log("person变化了", newValue, oldValue),
(immediate:true,deep:false) //此处的deep配置不再生效。​
})
//情况4：监视reactive所定义的一个响应式数据中的某个属性​
watch(()=>person.name,(newValue, oldValue)=>{
 console.log("person.name变化了", newValue, oldValue)
})
//情况5：监视reactive所定义的一个响应式数据中的某些属性​
watch([()=>person.name, ()=>person.age],(newValue, oldValue)=>{
 console.log("person.name或person.age变化了", newValue, oldValue)
})
//特殊情况：​
watch(()=>person.job,(newValue, oldValue)=>{

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29
30
31
32
33
34
35

 console.log("person.job变化了", newValue, oldValue)
}, {deep:true})

36
37
38

九、v-if 和 v-for 的优先级哪个高？​

在 vue2 中 v-for 的优先级更高，但是在 vue3 中优先级改变了。 v-if 的优先级更高。​

十、script setup 是干啥的？​

scrtpt setup 是 vue3 的语法糖，简化了 组合式 API 的写法，并且运行性能更好。使用
script setup 语法糖的特点：​

• 属性和方法无需返回，可以直接使用。

• 引入 组件 的时候，会 自动注册 ，无需通过 components 手动注册。​

• 使用 defineProps 接收父组件传递的值。​

• useAttrs 获取属性， useSlots 获取插槽， defineEmits 获取自定义事件。​

• 默认 不会对外暴露 任何属性，如果有需要可使用 defineExpose 。​

十一、Vue2/Vue3组件通信方式？​

Vue3通信方式：​

• props​

• $emit​

• expose / ref​

• $attrs

• v-model​

• provide / inject（原理：原型链）​

• Vuex/pinia​

• mitt​

Vue2.x 组件通信共有12种​

• props​

• $emit / v-on​

• .sync​

• v-model​

• ref​

• children/children / children/parent​

• attrs/attrs / attrs/listeners​

• provide / inject​

• EventBus​

• Vuex​

• $root​

• slot​

十二、ref与reactive的区别？​

ref与reactive 是 Vue3 新推出的主要 API 之一，它们主要用于响应式数据的创建。​

• template 模板中使用的数据和方法，都需要通过 setup 函数 return 出去才可以被使用。​

• ref 函数创建的响应式数据，在模板中可以直接被使用，在 JS 中需要通过 .value 的形式才
能使用。

• ref 函数可以接收原始数据类型与引用数据类型。​

• reactive 函数只能接收引用数据类型。​

• ref 底层还是使用 reactive 来做， ref 是在 reactive 上在进行了封装，增强了其能
力，使它支持了对原始数据类型的处理。

• 在 Vue3 中 reactive 能做的， ref 也能做， reactive 不能做的， ref 也能做。​

十三、EventBus与mitt区别？​

Vue2 中我们使用 EventBus 来实现跨组件之间的一些通信，它依赖于 Vue 自带的 ​
emit/$off 等方法，这种方式使用非常简单方便，但如果使用不当也会带来难以维护的毁灭灾难。​

on/

而 Vue3 中移除了这些相关方法，这意味着 EventBus 这种方式我们使用不了， Vue3 推荐尽可
能使用 props/emits 、 provide/inject 、 vuex 等其他方式来替代。​

当然，如果 Vue3 内部的方式无法满足你，官方建议使用一些外部的辅助库，例如：mitt。​

优点

• 非常小，压缩后仅有 200 bytes 。​

• 完整 TS 支持，源码由 TS 编码。​

• 跨框架，它并不是只能用在 Vue 中， React 、 JQ 等框架中也可以使用。​

• 使用简单，仅有 on 、 emit 、 off 等少量实用API。​

十四、谈谈pinia?​

Pinia 是 Vue 官方团队成员专门开发的一个全新状态管理库，并且 Vue 的官方状态管理库已经更改
为了 Pinia 。在 Vuex 官方仓库中也介绍说可以把 Pinia 当成是不同名称的 Vuex 5 ，这也意味
不会再出 5 版本了。​

优点

• 更加轻量级，压缩后提交只有 1.6kb 。

• 完整的 TS 的支持， Pinia 源码完全由 TS 编码完成。​

• 移除 mutations ，只剩下 state 、 actions 、 getters 。​

• 没有了像 Vuex 那样的模块镶嵌结构，它只有 store 概念，并支持多个 store ，且都是互相
独立隔离的。当然，你也可以手动从一个模块中导入另一个模块，来实现模块的镶嵌结构。

• 无需手动添加每个 store ，它的模块默认情况下创建就自动注册。​

• 支持服务端渲染（ SSR ）。

• 支持 Vue DevTools 。​

• 更友好的代码分割机制。

Pinia 配套有个插件 pinia-plugin-persist进行数据持久化，否则一刷新就会造成数据丢失​

https://github.com/vuejs/pinia
https://github.com/vuejs/vuex
https://seb-l.github.io/pinia-plugin-persist/

