
Webpack面试真题（10题）​

1. 说说你对webpack的理解？解决了什么问题？​

1.1. 背景​

Webpack 最初的目标是实现前端项目的模块化，旨在更高效地管理和维护项目中的每一个资源​

1.1.1. 模块化​

最早的时候，我们会通过文件划分的形式实现模块化，也就是将每个功能及其相关状态数据各自单独

放到不同的 JS 文件中​

约定每个文件是一个独立的模块，然后再将这些 js 文件引入到页面，一个 script 标签对应一个模
块，然后调用模块化的成员

<script src="module-a.js"></script>
<script src="module-b.js"></script>

1
2

但这种模块弊端十分的明显，模块都是在全局中工作，大量模块成员污染了环境，模块与模块之间并

没有依赖关系、维护困难、没有私有空间等问题

项目一旦变大，上述问题会尤其明显

随后，就出现了命名空间方式，规定每个模块只暴露一个全局对象，然后模块的内容都挂载到这个对

象中

window.moduleA = {
 method1: function () {
 console.log('moduleA#method1')
 }
}

1
2
3
4
5

这种方式也并没有解决第一种方式的依赖等问题

再后来，我们使用立即执行函数为模块提供私有空间，通过参数的形式作为依赖声明，如下

// module-a.js
(function ($) {
 var name = 'module-a'
 function method1 () {
 console.log(name + '#method1')
 $('body').animate({ margin: '200px' })
 }
 window.moduleA = {
 method1: method1
 }
})(jQuery)

1
2
3
4
5
6
7
8
9
10
11

上述的方式都是早期解决模块的方式，但是仍然存在一些没有解决的问题。例如，我们是用过

script 标签在页面引入这些模块的，这些模块的加载并不受代码的控制，时间一久维护起来也十分
的麻烦

理想的解决方式是，在页面中引入一个 JS 入口文件，其余用到的模块可以通过代码控制，按需加载
进来

除了模块加载的问题以外，还需要规定模块化的规范，如今流行的则是 CommonJS 、 ES Modules

1.2. 问题​

从后端渲染的 JSP 、 PHP ，到前端原生 JavaScript ，再到 jQuery 开发，再到目前的三大框
架 Vue 、 React 、 Angular

开发方式，也从 javascript 到后面的 es5 、 es6、7、8、9、10 ，再到 typescript ，包括
编写 CSS 的预处理器 less 、 scss 等

现代前端开发已经变得十分的复杂，所以我们开发过程中会遇到如下的问题：

• 需要通过模块化的方式来开发

• 使用一些高级的特性来加快我们的开发效率或者安全性，比如通过ES6+、TypeScript开发脚本逻

辑，通过sass、less等方式来编写css样式代码​

• 监听文件的变化来并且反映到浏览器上，提高开发的效率

• JavaScript 代码需要模块化，HTML 和 CSS 这些资源文件也会面临需要被模块化的问题​

• 开发完成后我们还需要将代码进行压缩、合并以及其他相关的优化

而 webpack 恰巧可以解决以上问题

1.3. 是什么​

webpack 是一个用于现代 JavaScript 应用程序的静态模块打包工具​

• 静态模块

这里的静态模块指的是开发阶段，可以被 webpack 直接引用的资源（可以直接被获取打包进

bundle.js 的资源）

当 webpack 处理应用程序时，它会在内部构建一个依赖图，此依赖图对应映射到项目所需的每个模
块（不再局限 js 文件），并生成一个或多个 bundle ​

1.3.1. webpack的能力：​

编译代码能力，提高效率，解决浏览器兼容问题

模块整合能力，提高性能，可维护性，解决浏览器频繁请求文件的问题

万物皆可模块能力，项目维护性增强，支持不同种类的前端模块类型，统一的模块化方案，所有资源

文件的加载都可以通过代码控制

2. 说说webpack的热更新是如何做到的？原理是什么？​

2.1. 是什么​

HMR 全称 Hot Module Replacement ，可以理解为模块热替换，指在应用程序运行过程中，替
换、添加、删除模块，而无需重新刷新整个应用

例如，我们在应用运行过程中修改了某个模块，通过自动刷新会导致整个应用的整体刷新，那页面中

的状态信息都会丢失

如果使用的是 HMR ，就可以实现只将修改的模块实时替换至应用中，不必完全刷新整个应用​

在 webpack 中配置开启热模块也非常的简单，如下代码：

const webpack = require('webpack')
module.exports = {

1
2

 // ...
 devServer: {
 // 开启 HMR 特性​
 hot: true
 // hotOnly: true
 }
}

3
4
5
6
7
8
9

通过上述这种配置，如果我们修改并保存 css 文件，确实能够以不刷新的形式更新到页面中

但是，当我们修改并保存 js 文件之后，页面依旧自动刷新了，这里并没有触发热模块

所以， HMR 并不像 Webpack 的其他特性一样可以开箱即用，需要有一些额外的操作​

我们需要去指定哪些模块发生更新时进行 HRM ，如下代码：

if(module.hot){
 module.hot.accept('./util.js',()=>{
 console.log("util.js更新了")
 })
}

1
2
3
4
5

2.2. 实现原理​

首先来看看一张图，如下：

• Webpack Compile：将 JS 源代码编译成 bundle.js​

• HMR Server：用来将热更新的文件输出给 HMR Runtime​

• Bundle Server：静态资源文件服务器，提供文件访问路径​

• HMR Runtime：socket服务器，会被注入到浏览器，更新文件的变化​

• bundle.js：构建输出的文件​

• 在HMR Runtime 和 HMR Server之间建立 websocket，即图上4号线，用于实时更新文件变化​

上面图中，可以分成两个阶段：

• 启动阶段为上图 1 - 2 - A - B​

在编写未经过 webpack 打包的源代码后， Webpack Compile 将源代码和 HMR Runtime 一起

编译成 bundle 文件，传输给 Bundle Server 静态资源服务器​

• 更新阶段为上图 1 - 2 - 3 - 4​

当某一个文件或者模块发生变化时， webpack 监听到文件变化对文件重新编译打包，编译生成唯一
的 hash 值，这个 hash 值用来作为下一次热更新的标识

根据变化的内容生成两个补丁文件： manifest （包含了 hash 和 chundId ，用来说明变化的内
容）和 chunk.js 模块​

由于 socket 服务器在 HMR Runtime 和 HMR Server 之间建立 websocket 链接，当文件发
生改动的时候，服务端会向浏览器推送一条消息，消息包含文件改动后生成的 hash 值，如下图的 h
属性，作为下一次热更细的标识

在浏览器接受到这条消息之前，浏览器已经在上一次 socket 消息中已经记住了此时的 hash 标

识，这时候我们会创建一个 ajax 去服务端请求获取到变化内容的 manifest 文件​

mainfest 文件包含重新 build 生成的 hash 值，以及变化的模块，对应上图的 c 属性

浏览器根据 manifest 文件获取模块变化的内容，从而触发 render 流程，实现局部模块更新​

2.3. 总结​

关于 webpack 热模块更新的总结如下：

• 通过 webpack-dev-server 创建两个服务器：提供静态资源的服务（express）和Socket服务​

• express server 负责直接提供静态资源的服务（打包后的资源直接被浏览器请求和解析）​

• socket server 是一个 websocket 的长连接，双方可以通信​

• 当 socket server 监听到对应的模块发生变化时，会生成两个文件.json（manifest文件）和.js文件

（update chunk）​

• 通过长连接，socket server 可以直接将这两个文件主动发送给客户端（浏览器）​

• 浏览器拿到两个新的文件后，通过HMR runtime机制，加载这两个文件，并且针对修改的模块进行

更新

3. 说说webpack的构建流程?​

3.1. 运行流程​

webpack 的运行流程是一个串行的过程，它的工作流程就是将各个插件串联起来​

在运行过程中会广播事件，插件只需要监听它所关心的事件，就能加入到这条 webpack 机制中，去
改变 webpack 的运作，使得整个系统扩展性良好

从启动到结束会依次执行以下三大步骤：

• 初始化流程：从配置文件和 Shell 语句中读取与合并参数，并初始化需要使用的插件和配置插件

等执行环境所需要的参数

• 编译构建流程：从 Entry 发出，针对每个 Module 串行调用对应的 Loader 去翻译文件内容，再找

到该 Module 依赖的 Module，递归地进行编译处理​

• 输出流程：对编译后的 Module 组合成 Chunk，把 Chunk 转换成文件，输出到文件系统​

3.1.1. 初始化流程​

从配置文件和 Shell 语句中读取与合并参数，得出最终的参数​

配置文件默认下为 webpack.config.js ，也或者通过命令的形式指定配置文件，主要作用是用于
激活 webpack 的加载项和插件

关于文件配置内容分析，如下注释：

var path = require('path');
var node_modules = path.resolve(__dirname, 'node_modules');
var pathToReact = path.resolve(node_modules, 'react/dist/react.min.js');
module.exports = {
 // 入口文件，是模块构建的起点，同时每一个入口文件对应最后生成的一个 chunk。​
 entry: './path/to/my/entry/file.js'，
 // 文件路径指向(可加快打包过程)。​
 resolve: {
 alias: {
 'react': pathToReact

1
2
3
4
5
6
7
8
9
10

 }
 },
 // 生成文件，是模块构建的终点，包括输出文件与输出路径。​
 output: {
 path: path.resolve(__dirname, 'build'),
 filename: '[name].js'
 },
 // 这里配置了处理各模块的 loader ，包括 css 预处理 loader ，es6 编译 loader，图片处
理 loader。​
 module: {
 loaders: [
 {
 test: /\.js$/,
 loader: 'babel',
 query: {
 presets: ['es2015', 'react']
 }
 }
],
 noParse: [pathToReact]
 },
 // webpack 各插件对象，在 webpack 的事件流中执行对应的方法。​
 plugins: [
 new webpack.HotModuleReplacementPlugin()
]
};

11
12
13
14
15
16
17
18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35

webpack 将 webpack.config.js 中的各个配置项拷贝到 options 对象中，并加载用户配置

的 plugins ​

完成上述步骤之后，则开始初始化 Compiler 编译对象，该对象掌控者 webpack 声明周期，不执
行具体的任务，只是进行一些调度工作

class Compiler extends Tapable {
 constructor(context) {
 super();
 this.hooks = {
 beforeCompile: new AsyncSeriesHook(["params"]),
 compile: new SyncHook(["params"]),
 afterCompile: new AsyncSeriesHook(["compilation"]),
 make: new AsyncParallelHook(["compilation"]),
 entryOption: new SyncBailHook(["context", "entry"])
 // 定义了很多不同类型的钩子​
 };
 // ...

1
2
3
4
5
6
7
8
9
10
11
12

 }
}
function webpack(options) {
 var compiler = new Compiler();
 ...// 检查options,若watch字段为true,则开启watch线程​
 return compiler;
}
...

13
14
15
16
17
18
19
20

Compiler 对象继承自 Tapable ，初始化时定义了很多钩子函数​

3.1.2. 编译构建流程​

根据配置中的 entry 找出所有的入口文件​

module.exports = {
 entry: './src/file.js'
}

1
2
3

初始化完成后会调用 Compiler 的 run 来真正启动 webpack 编译构建流程，主要流程如下：

• compile 开始编译​

• make 从入口点分析模块及其依赖的模块，创建这些模块对象​

• build-module 构建模块​

• seal 封装构建结果​

• emit 把各个chunk输出到结果文件​

3.1.2.1. compile 编译​

执行了 run 方法后，首先会触发 compile ，主要是构建一个 Compilation 对象

该对象是编译阶段的主要执行者，主要会依次下述流程：执行模块创建、依赖收集、分块、打包等主

要任务的对象

3.1.2.2. make 编译模块​

当完成了上述的 compilation 对象后，就开始从 Entry 入口文件开始读取，主要执行
_addModuleChain() 函数，如下：

_addModuleChain(context, dependency, onModule, callback) {
 ...
 // 根据依赖查找对应的工厂函数​
 const Dep = /** @type {DepConstructor} */ (dependency.constructor);

1
2
3
4

 const moduleFactory = this.dependencyFactories.get(Dep);

 // 调用工厂函数NormalModuleFactory的create来生成一个空的NormalModule对象​
 moduleFactory.create({
 dependencies: [dependency]
 ...
 }, (err, module) => {
 ...
 const afterBuild = () => {
 this.processModuleDependencies(module, err => {
 if (err) return callback(err);
 callback(null, module);
 });
 };

 this.buildModule(module, false, null, null, err => {
 ...
 afterBuild();
 })
 })
}

5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

过程如下：

_addModuleChain 中接收参数 dependency 传入的入口依赖，使用对应的工厂函数
NormalModuleFactory.create 方法生成一个空的 module 对象

回调中会把此 module 存入 compilation.modules 对象和 dependencies.module 对象中，
由于是入口文件，也会存入 compilation.entries 中

随后执行 buildModule 进入真正的构建模块 module 内容的过程

3.1.2.3. build module 完成模块编译​

这里主要调用配置的 loaders ，将我们的模块转成标准的 JS 模块

在用 Loader 对一个模块转换完后，使用 acorn 解析转换后的内容，输出对应的抽象语法树

（ AST ），以方便 Webpack 后面对代码的分析​

从配置的入口模块开始，分析其 AST ，当遇到 require 等导入其它模块语句时，便将其加入到依
赖的模块列表，同时对新找出的依赖模块递归分析，最终搞清所有模块的依赖关系

3.1.3. 输出流程​

3.1.3.1. seal 输出资源​

seal 方法主要是要生成 chunks ，对 chunks 进行一系列的优化操作，并生成要输出的代码

webpack 中的 chunk ，可以理解为配置在 entry 中的模块，或者是动态引入的模块​

根据入口和模块之间的依赖关系，组装成一个个包含多个模块的 Chunk ，再把每个 Chunk 转换成

一个单独的文件加入到输出列表

3.1.3.2. emit 输出完成

在确定好输出内容后，根据配置确定输出的路径和文件名

output: {
 path: path.resolve(__dirname, 'build'),
 filename: '[name].js'
}

1
2
3
4

在 Compiler 开始生成文件前，钩子 emit 会被执行，这是我们修改最终文件的最后一个机会​

从而 webpack 整个打包过程则结束了

3.1.4. 小结​

4. 说说webpack proxy工作原理？为什么能解决跨域?​

4.1. 是什么​

webpack proxy ，即 webpack 提供的代理服务

基本行为就是接收客户端发送的请求后转发给其他服务器

其目的是为了便于开发者在开发模式下解决跨域问题（浏览器安全策略限制）

想要实现代理首先需要一个中间服务器， webpack 中提供服务器的工具为 webpack-dev-
server

4.1.1. webpack-dev-server​

webpack-dev-server 是 webpack 官方推出的一款开发工具，将自动编译和自动刷新浏览器等

一系列对开发友好的功能全部集成在了一起

目的是为了提高开发者日常的开发效率，只适用在开发阶段

关于配置方面，在 webpack 配置对象属性中通过 devServer 属性提供，如下：

// ./webpack.config.js
const path = require('path')
module.exports = {
 // ...
 devServer: {
 contentBase: path.join(__dirname, 'dist'),
 compress: true,
 port: 9000,
 proxy: {
 '/api': {
 target: 'https://api.github.com'
 }
 }
 // ...
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

}16

devServetr 里面 proxy 则是关于代理的配置，该属性为对象的形式，对象中每一个属性就是一个
代理的规则匹配

属性的名称是需要被代理的请求路径前缀，一般为了辨别都会设置前缀为 /api ，值为对应的代理匹
配规则，对应如下：

• target：表示的是代理到的目标地址​

• pathRewrite：默认情况下，我们的 /api-hy 也会被写入到URL中，如果希望删除，可以使用

pathRewrite​

• secure：默认情况下不接收转发到https的服务器上，如果希望支持，可以设置为false​

• changeOrigin：它表示是否更新代理后请求的 headers 中host地址​

4.2. 工作原理​

proxy 工作原理实质上是利用 http-proxy-middleware 这个 http 代理中间件，实现请求转
发给其他服务器

举个例子：

在开发阶段，本地地址为 http://localhost:3000，该浏览器发送一个前缀带有 /api 标识的
请求到服务端获取数据，但响应这个请求的服务器只是将请求转发到另一台服务器中

const express = require('express');
const proxy = require('http-proxy-middleware');
const app = express();
app.use('/api', proxy({target: 'http://www.example.org', changeOrigin: true}));
app.listen(3000);
// http://localhost:3000/api/foo/bar -> http://www.example.org/api/foo/bar

1
2
3
4
5
6

4.3. 跨域​

在开发阶段， webpack-dev-server 会启动一个本地开发服务器，所以我们的应用在开发阶段是

独立运行在 localhost 的一个端口上，而后端服务又是运行在另外一个地址上​

所以在开发阶段中，由于浏览器同源策略的原因，当本地访问后端就会出现跨域请求的问题

通过设置 webpack proxy 实现代理请求后，相当于浏览器与服务端中添加一个代理者

当本地发送请求的时候，代理服务器响应该请求，并将请求转发到目标服务器，目标服务器响应数据

后再将数据返回给代理服务器，最终再由代理服务器将数据响应给本地

http://localhost:3000/

在代理服务器传递数据给本地浏览器的过程中，两者同源，并不存在跨域行为，这时候浏览器就能正

常接收数据

注意：服务器与服务器之间请求数据并不会存在跨域行为，跨域行为是浏览器安全策略限制

5. 说说webpack中常见的Loader？解决了什么问题？​

5.1. 是什么​

loader 用于对模块的"源代码"进行转换，在 import 或"加载"模块时预处理文件​

webpack 做的事情，仅仅是分析出各种模块的依赖关系，然后形成资源列表，最终打包生成到指定
的文件中。如下图所示：

在 webpack 内部中，任何文件都是模块，不仅仅只是 js 文件

默认情况下，在遇到 import 或者 require 加载模块的时候， webpack 只支持对 js 和 json

文件打包

像 css 、 sass 、 png 等这些类型的文件的时候， webpack 则无能为力，这时候就需要配置对应
的 loader 进行文件内容的解析

在加载模块的时候，执行顺序如下：

当 webpack 碰到不识别的模块的时候， webpack 会在配置的中查找该文件解析规则​

关于配置 loader 的方式有三种：

• 配置方式（推荐）：在 webpack.config.js文件中指定 loader​

• 内联方式：在每个 import 语句中显式指定 loader​

• CLI 方式：在 shell 命令中指定它们​

5.1.1. 配置方式​

关于 loader 的配置，我们是写在 module.rules 属性中，属性介绍如下：

• rules 是一个数组的形式，因此我们可以配置很多个 loader

• 每一个 loader 对应一个对象的形式，对象属性 test 为匹配的规则，一般情况为正则表达式 ​

• 属性 use 针对匹配到文件类型，调用对应的 loader 进行处理 ​

代码编写，如下形式：

module.exports = {
 module: {
 rules: [
 {
 test: /\.css$/,
 use: [
 { loader: 'style-loader' },
 {
 loader: 'css-loader',
 options: {
 modules: true
 }
 },
 { loader: 'sass-loader' }
]
 }
]
 }
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

5.2. 特性​

这里继续拿上述代码，来讲讲 loader 的特性

从上述代码可以看到，在处理 css 模块的时候， use 属性中配置了三个 loader 分别处理 css 文
件

因为 loader 支持链式调用，链中的每个 loader 会处理之前已处理过的资源，最终变为 js 代
码。顺序为相反的顺序执行，即上述执行方式为 sass-loader 、 css-loader 、 style-
loader

除此之外， loader 的特性还有如下：

• loader 可以是同步的，也可以是异步的​

• loader 运行在 Node.js 中，并且能够执行任何操作​

• 除了常见的通过 package.json 的 main 来将一个 npm 模块导出为 loader，还可以在

module.rules 中使用 loader 字段直接引用一个模块​

• 插件(plugin)可以为 loader 带来更多特性​

• loader 能够产生额外的任意文件​

可以通过 loader 的预处理函数，为 JavaScript 生态系统提供更多能力。用户现在可以更加灵活地引入

细粒度逻辑，例如：压缩、打包、语言翻译和更多其他特性

5.3. 常见的loader​

在页面开发过程中，我们经常性加载除了 js 文件以外的内容，这时候我们就需要配置响应的
loader 进行加载

常见的 loader 如下：

• style-loader: 将css添加到DOM的内联样式标签style里​

• css-loader :允许将css文件通过require的方式引入，并返回css代码​

• less-loader: 处理less​

• sass-loader: 处理sass​

• postcss-loader: 用postcss来处理CSS​

• autoprefixer-loader: 处理CSS3属性前缀，已被弃用，建议直接使用postcss​

• file-loader: 分发文件到output目录并返回相对路径​

• url-loader: 和file-loader类似，但是当文件小于设定的limit时可以返回一个Data Url​

• html-minify-loader: 压缩HTML​

• babel-loader :用babel来转换ES6文件到ES​

下面给出一些常见的 loader 的使用：

5.3.1. css-loader​

分析 css 模块之间的关系，并合成⼀个 css ​

npm install --save-dev css-loader1

rules: [
 ...,
 {
 test: /\.css$/,
 use: {
 loader: "css-loader",
 options: {
 // 启用/禁用 url() 处理​
 url: true,
 // 启用/禁用 @import 处理​
 import: true,

1
2
3
4
5
6
7
8
9
10
11

 // 启用/禁用 Sourcemap​
 sourceMap: false
 }
 }
 }
]

12
13
14
15
16
17

如果只通过 css-loader 加载文件，这时候页面代码设置的样式并没有生效

原因在于， css-loader 只是负责将 .css 文件进行一个解析，而并不会将解析后的 css 插入到
页面中

如果我们希望再完成插入 style 的操作，那么我们还需要另外一个 loader ，就是 style-
loader

5.3.2. style-loader​

把 css-loader 生成的内容，用 style 标签挂载到页面的 head 中​

npm install --save-dev style-loader1

rules: [
 ...,
 {
 test: /\.css$/,
 use: ["style-loader", "css-loader"]
 }
]

1
2
3
4
5
6
7

同一个任务的 loader 可以同时挂载多个，处理顺序为：从右到左，从下往上​

5.3.3. less-loader​

开发中，我们也常常会使用 less 、 sass 、 stylus 预处理器编写 css 样式，使开发效率提高，
这里需要使用 less-loader

npm install less-loader -D1

rules: [1

 ...,
 {
 test: /\.css$/,
 use: ["style-loader", "css-loader","less-loader"]
 }
]

2
3
4
5
6
7

5.3.4. raw-loader​

在 webpack 中通过 import 方式导入文件内容，该 loader 并不是内置的，所以首先要安装​

npm install --save-dev raw-loader1

然后在 webpack.config.js 中进行配置​

module.exports = {
 ...,
 module: {
 rules: [
 {
 test: /\.(txt|md)$/,
 use: 'raw-loader'
 }
]
 }
}

1
2
3
4
5
6
7
8
9
10
11

5.3.5. file-loader​

把识别出的资源模块，移动到指定的输出⽬目录，并且返回这个资源在输出目录的地址(字符串)​

npm install --save-dev file-loader1

rules: [
 ...,
 {
 test: /\.(png|jpe?g|gif)$/,
 use: {
 loader: "file-loader",

1
2
3
4
5
6

 options: {
 // placeholder 占位符 [name] 源资源模块的名称​
 // [ext] 源资源模块的后缀​
 name: "[name]_[hash].[ext]",
 //打包后的存放位置​
 outputPath: "./images",
 // 打包后文件的 url​
 publicPath: './images',
 }
 }
 }
]

7
8
9
10
11
12
13
14
15
16
17
18

5.3.6. url-loader​

可以处理理 file-loader 所有的事情，但是遇到图片格式的模块，可以选择性的把图片转成

base64 格式的字符串，并打包到 js 中，对小体积的图片比较合适，大图片不合适。​

npm install --save-dev url-loader1

rules: [
 ...,
 {
 test: /\.(png|jpe?g|gif)$/,
 use: {
 loader: "url-loader",
 options: {
 // placeholder 占位符 [name] 源资源模块的名称​
 // [ext] 源资源模块的后缀​
 name: "[name]_[hash].[ext]",
 //打包后的存放位置​
 outputPath: "./images"
 // 打包后文件的 url​
 publicPath: './images',
 // 小于 100 字节转成 base64 格式​
 limit: 100
 }
 }
 }
]

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20

6. 说说webpack中常见的Plugin？解决了什么问题？​

6.1. 是什么​

Plugin （Plug-in）是一种计算机应用程序，它和主应用程序互相交互，以提供特定的功能​

是一种遵循一定规范的应用程序接口编写出来的程序，只能运行在程序规定的系统下，因为其需要调

用原纯净系统提供的函数库或者数据

webpack 中的 plugin 也是如此， plugin 赋予其各种灵活的功能，例如打包优化、资源管理、
环境变量注入等，它们会运行在 webpack 的不同阶段（钩子 / 生命周期），贯穿了 webpack 整个
编译周期

目的在于解决 loader 无法实现的其他事​

6.1.1. 配置方式​

这里讲述文件的配置方式，一般情况，通过配置文件导出对象中 plugins 属性传入 new 实例对象。
如下所示：

const HtmlWebpackPlugin = require('html-webpack-plugin'); // 通过 npm 安装​
const webpack = require('webpack'); // 访问内置的插件​
module.exports = {
 ...
 plugins: [
 new webpack.ProgressPlugin(),
 new HtmlWebpackPlugin({ template: './src/index.html' }),
],
};

1
2
3
4
5
6
7
8
9

6.2. 特性​

其本质是一个具有 apply 方法 javascript 对象

apply 方法会被 webpack compiler 调用，并且在整个编译生命周期都可以访问 compiler
对象

const pluginName = 'ConsoleLogOnBuildWebpackPlugin';
class ConsoleLogOnBuildWebpackPlugin {
 apply(compiler) {
 compiler.hooks.run.tap(pluginName, (compilation) => {
 console.log('webpack 构建过程开始！');
 });
 }
}
module.exports = ConsoleLogOnBuildWebpackPlugin;

1
2
3
4
5
6
7
8
9

compiler hook 的 tap 方法的第一个参数，应是驼峰式命名的插件名称​

关于整个编译生命周期钩子，有如下：

• entry-option ：初始化 option​

• run​

• compile： 真正开始的编译，在创建 compilation 对象之前​

• compilation ：生成好了 compilation 对象​

• make 从 entry 开始递归分析依赖，准备对每个模块进行 build​

• after-compile： 编译 build 过程结束​

• emit ：在将内存中 assets 内容写到磁盘文件夹之前​

• after-emit ：在将内存中 assets 内容写到磁盘文件夹之后​

• done： 完成所有的编译过程​

• failed： 编译失败的时候​

6.3. 三、常见的Plugin​

常见的 plugin 有如图所示：

下面介绍几个常用的插件用法：

6.3.1. HtmlWebpackPlugin​

在打包结束后，⾃动生成⼀个 html ⽂文件，并把打包生成的 js 模块引⼊到该 html 中​

npm install --save-dev html-webpack-plugin1

// webpack.config.js
const HtmlWebpackPlugin = require("html-webpack-plugin");
module.exports = {
 ...
 plugins: [
 new HtmlWebpackPlugin({
 title: "My App",
 filename: "app.html",
 template: "./src/html/index.html"
 })
]
};

1
2
3
4
5
6
7
8
9
10
11
12

<!--./src/html/index.html-->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <meta name="viewport" content="width=device-width, initial-scale=1.0">
 <meta http-equiv="X-UA-Compatible" content="ie=edge">
 <title><%=htmlWebpackPlugin.options.title%></title>
</head>
<body>
 <h1>html-webpack-plugin</h1>
</body>
</html>

1
2
3
4
5
6
7
8
9
10
11
12
13

在 html 模板中，可以通过 <%=htmlWebpackPlugin.options.XXX%> 的方式获取配置的值​

更多的配置可以自寻查找

6.3.2. clean-webpack-plugin​

删除（清理）构建目录

npm install --save-dev clean-webpack-plugin1

const {CleanWebpackPlugin} = require('clean-webpack-plugin');
module.exports = {
 ...
 plugins: [
 ...,
 new CleanWebpackPlugin(),
 ...
]
}

1
2
3
4
5
6
7
8
9

6.3.3. mini-css-extract-plugin​

提取 CSS 到一个单独的文件中​

npm install --save-dev mini-css-extract-plugin1

const MiniCssExtractPlugin = require('mini-css-extract-plugin');
module.exports = {
 ...,
 module: {
 rules: [
 {
 test: /\.s[ac]ss$/,
 use: [
 {
 loader: MiniCssExtractPlugin.loader
 },
 'css-loader',
 'sass-loader'
]
 }
]
 },
 plugins: [
 ...,
 new MiniCssExtractPlugin({
 filename: '[name].css'
 }),
 ...

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

]
}

24
25

6.3.4. DefinePlugin​

允许在编译时创建配置的全局对象，是一个 webpack 内置的插件，不需要安装

const { DefinePlugun } = require('webpack')
module.exports = {
 ...
 plugins:[
 new DefinePlugin({
 BASE_URL:'"./"'
 })
]
}

1
2
3
4
5
6
7
8
9

这时候编译 template 模块的时候，就能通过下述形式获取全局对象

<link rel="icon" href="<%= BASE_URL%>favicon.ico>"1

6.3.5. copy-webpack-plugin​

复制文件或目录到执行区域，如 vue 的打包过程中，如果我们将一些文件放到 public 的目录下，
那么这个目录会被复制到 dist 文件夹中

npm install copy-webpack-plugin -D1

new CopyWebpackPlugin({
 parrerns:[
 {
 from:"public",
 globOptions:{
 ignore:[
 '**/index.html'
]
 }
 }
]

1
2
3
4
5
6
7
8
9
10
11

})12

复制的规则在 patterns 属性中设置：

• from：设置从哪一个源中开始复制 ​

• to：复制到的位置，可以省略，会默认复制到打包的目录下 ​

• globOptions：设置一些额外的选项，其中可以编写需要忽略的文件 ​

7. 说说Loader和Plugin的区别？编写Loader，Plugin的思
路？

7.1. 区别​

前面两节我们有提到 Loader 与 Plugin 对应的概念，先来回顾下

• loader 是文件加载器，能够加载资源文件，并对这些文件进行一些处理，诸如编译、压缩等，最终

一起打包到指定的文件中

• plugin 赋予了 webpack 各种灵活的功能，例如打包优化、资源管理、环境变量注入等，目的是解

决 loader 无法实现的其他事​

从整个运行时机上来看，如下图所示：

可以看到，两者在运行时机上的区别：

• loader 运行在打包文件之前​

• plugins 在整个编译周期都起作用​

在 Webpack 运行的生命周期中会广播出许多事件， Plugin 可以监听这些事件，在合适的时机通

过 Webpack 提供的 API 改变输出结果​

对于 loader ，实质是一个转换器，将A文件进行编译形成B文件，操作的是文件，比如将 A.scss
或 A.less 转变为 B.css ，单纯的文件转换过程

7.2. 编写loader​

在编写 loader 前，我们首先需要了解 loader 的本质​

其本质为函数，函数中的 this 作为上下文会被 webpack 填充，因此我们不能将 loader 设为
一个箭头函数

函数接受一个参数，为 webpack 传递给 loader 的文件源内容​

函数中 this 是由 webpack 提供的对象，能够获取当前 loader 所需要的各种信息​

函数中有异步操作或同步操作，异步操作通过 this.callback 返回，返回值要求为 string 或

者 Buffer ​

代码如下所示：

// 导出一个函数，source为webpack传递给loader的文件源内容​
module.exports = function(source) {
 const content = doSomeThing2JsString(source);

 // 如果 loader 配置了 options 对象，那么this.query将指向 options​

1
2
3
4
5

 const options = this.query;

 // 可以用作解析其他模块路径的上下文​
 console.log('this.context');

 /*
 * this.callback 参数：​
 * error：Error | null，当 loader 出错时向外抛出一个 error​
 * content：String | Buffer，经过 loader 编译后需要导出的内容​
 * sourceMap：为方便调试生成的编译后内容的 source map​
 * ast：本次编译生成的 AST 静态语法树，之后执行的 loader 可以直接使用这个 AST，进而
省去重复生成 AST 的过程​
 */
 this.callback(null, content); // 异步​
 return content; // 同步​
}

6
7
8
9
10
11
12
13
14
15
16

17
18
19
20

一般在编写 loader 的过程中，保持功能单一，避免做多种功能

如 less 文件转换成 css 文件也不是一步到位，而是 less-loader 、 css-loader 、
style-loader 几个 loader 的链式调用才能完成转换​

7.3. 编写plugin​

由于 webpack 基于发布订阅模式，在运行的生命周期中会广播出许多事件，插件通过监听这些事
件，就可以在特定的阶段执行自己的插件任务

在之前也了解过， webpack 编译会创建两个核心对象：

• compiler：包含了 webpack 环境的所有的配置信息，包括 options，loader 和 plugin，和

webpack 整个生命周期相关的钩子​

• compilation：作为 plugin 内置事件回调函数的参数，包含了当前的模块资源、编译生成资源、变

化的文件以及被跟踪依赖的状态信息。当检测到一个文件变化，一次新的 Compilation 将被创建​

如果自己要实现 plugin ，也需要遵循一定的规范：

• 插件必须是一个函数或者是一个包含 apply 方法的对象，这样才能访问 compiler 实例​

• 传给每个插件的 compiler 和 compilation 对象都是同一个引用，因此不建议修改​

• 异步的事件需要在插件处理完任务时调用回调函数通知 Webpack 进入下一个流程，不然会卡住​

实现 plugin 的模板如下：

class MyPlugin {
 // Webpack 会调用 MyPlugin 实例的 apply 方法给插件实例传入 compiler 对象​
 apply (compiler) {
 // 找到合适的事件钩子，实现自己的插件功能​

1
2
3
4

 compiler.hooks.emit.tap('MyPlugin', compilation => {
 // compilation: 当前打包构建流程的上下文​
 console.log(compilation);

 // do something...
 })
 }
}

5
6
7
8
9
10
11
12

在 emit 事件发生时，代表源文件的转换和组装已经完成，可以读取到最终将输出的资源、代码块、

模块及其依赖，并且可以修改输出资源的内容

8. 如何提高webpack的构建速度？​

8.1. 背景​

随着我们的项目涉及到页面越来越多，功能和业务代码也会随着越多，相应的 webpack 的构建时间

也会越来越久

构建时间与我们日常开发效率密切相关，当我们本地开发启动 devServer 或者 build 的时候，

如果时间过长，会大大降低我们的工作效率

所以，优化 webpack 构建速度是十分重要的环节​

8.2. 如何优化​

常见的提升构建速度的手段有如下：

• 优化 loader 配置​

• 合理使用 resolve.extensions​

• 优化 resolve.modules​

• 优化 resolve.alias​

• 使用 DLLPlugin 插件​

• 使用 cache-loader​

• terser 启动多线程​

• 合理使用 sourceMap​

8.2.1. 优化loader配置​

在使用 loader 时，可以通过配置 include 、 exclude 、 test 属性来匹配文件，接触
include 、 exclude 规定哪些匹配应用 loader

如采用 ES6 的项目为例，在配置 babel-loader 时，可以这样：​

module.exports = {
 module: {
 rules: [
 {
 // 如果项目源码中只有 js 文件就不要写成 /\.jsx?​
$/，提升正则表达式性能
 test: /\.js$
/,
 // babel-loader 支持缓存转换出的结果，通过 cacheDirectory 选项开启​
 use: ['babel-loader?cacheDirectory'],
 // 只对项目根目录下的 src 目录中的文件采用 babel-loader​
 include: path.resolve(__dirname, 'src'),
 },
]
 },
};

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

8.2.2. 合理使用 resolve.extensions​

在开发中我们会有各种各样的模块依赖，这些模块可能来自于自己编写的代码，也可能来自第三方

库， resolve 可以帮助 webpack 从每个 require/import 语句中，找到需要引入到合适的模

块代码

通过 resolve.extensions 是解析到文件时自动添加拓展名，默认情况如下：

module.exports = {
 ...
 extensions:[".warm",".mjs",".js",".json"]
}

1
2
3
4

当我们引入文件的时候，若没有文件后缀名，则会根据数组内的值依次查找

当我们配置的时候，则不要随便把所有后缀都写在里面，这会调用多次文件的查找，这样就会减慢打

包速度

8.2.3. 优化 resolve.modules​

resolve.modules 用于配置 webpack 去哪些目录下寻找第三方模块。默认值为

['node_modules'] ，所以默认会从 node_modules 中查找文件
当安装的第三方模块都放在项目根目录下的 ./node_modules 目录下时，所以可以指明存放第三方
模块的绝对路径，以减少寻找，配置如下：

module.exports = {
 resolve: {
 // 使用绝对路径指明第三方模块存放的位置，以减少搜索步骤
 // 其中 __dirname 表示当前工作目录，也就是项目根目录
 modules: [path.resolve(__dirname, 'node_modules')]
 },
};

1
2
3
4
5
6
7

8.2.4. 优化 resolve.alias​

alias 给一些常用的路径起一个别名，特别当我们的项目目录结构比较深的时候，一个文件的路径可
能是 ./../../ 的形式

通过配置 alias 以减少查找过程

module.exports = {
 ...
 resolve:{
 alias:{
 "@":path.resolve(__dirname,'./src')
 }
 }
}

1
2
3
4
5
6
7
8

8.2.5. 使用 DLLPlugin 插件​

DLL 全称是 动态链接库，是为软件在winodw种实现共享函数库的一种实现方式，而Webpack也内置

了DLL的功能，为的就是可以共享，不经常改变的代码，抽成一个共享的库。这个库在之后的编译过程

中，会被引入到其他项目的代码中

使用步骤分成两部分：

• 打包一个 DLL 库​

• 引入 DLL 库​

8.2.5.1. 打包一个 DLL 库​

webpack 内置了一个 DllPlugin 可以帮助我们打包一个DLL的库文件​

module.exports = {
 ...
 plugins:[
 new webpack.DllPlugin({
 name:'dll_[name]',
 path:path.resolve(__dirname,"./dll/[name].mainfest.json")
 })
]
}

1
2
3
4
5
6
7
8
9

8.2.5.2. 引入 DLL 库​

使用 webpack 自带的 DllReferencePlugin 插件对 mainfest.json 映射文件进行分析，

获取要使用的 DLL 库

然后再通过 AddAssetHtmlPlugin 插件，将我们打包的 DLL 库引入到 Html 模块中

module.exports = {
 ...
 new webpack.DllReferencePlugin({
 context:path.resolve(__dirname,"./dll/dll_react.js"),
 mainfest:path.resolve(__dirname,"./dll/react.mainfest.json")
 }),
 new AddAssetHtmlPlugin({
 outputPath:"./auto",
 filepath:path.resolve(__dirname,"./dll/dll_react.js")
 })
}

1
2
3
4
5
6
7
8
9
10
11

8.2.6. 使用 cache-loader​

在一些性能开销较大的 loader 之前添加 cache-loader ，以将结果缓存到磁盘里，显著提升二
次构建速度

保存和读取这些缓存文件会有一些时间开销，所以请只对性能开销较大的 loader 使用此 loader ​

module.exports = {
 module: {
 rules: [
 {
 test: /\.ext$/,
 use: ['cache-loader', ...loaders],
 include: path.resolve('src'),
 },
],
 },
};

1
2
3
4
5
6
7
8
9
10
11

8.2.7. terser 启动多线程​

使用多进程并行运行来提高构建速度

module.exports = {
 optimization: {
 minimizer: [
 new TerserPlugin({
 parallel: true,
 }),
],
 },
};

1
2
3
4
5
6
7
8
9

8.2.8. 合理使用 sourceMap​

打包生成 sourceMap 的时候，如果信息越详细，打包速度就会越慢。对应属性取值如下所示：​

8.3. 总结​

可以看到，优化 webpack 构建的方式有很多，主要可以从优化搜索时间、缩小文件搜索范围、减少
不必要的编译等方面入手

9. 说说如何借助webpack来优化前端性能？​

9.1. 背景​

随着前端的项目逐渐扩大，必然会带来的一个问题就是性能

尤其在大型复杂的项目中，前端业务可能因为一个小小的数据依赖，导致整个页面卡顿甚至奔溃

一般项目在完成后，会通过 webpack 进行打包，利用 webpack 对前端项目性能优化是一个十分重
要的环节

9.2. 如何优化​

通过 webpack 优化前端的手段有：

• JS代码压缩​

• CSS代码压缩​

• Html文件代码压缩​

• 文件大小压缩

• 图片压缩

• Tree Shaking​

• 代码分离

• 内联 chunk​

9.2.1. JS代码压缩​

terser 是一个 JavaScript 的解释、绞肉机、压缩机的工具集，可以帮助我们压缩、丑化我们的
代码，让 bundle 更小

在 production 模式下， webpack 默认就是使用 TerserPlugin 来处理我们的代码的。如果

想要自定义配置它，配置方法如下：

const TerserPlugin = require('terser-webpack-plugin')1

module.exports = {
 ...
 optimization: {
 minimize: true,
 minimizer: [
 new TerserPlugin({
 parallel: true // 电脑cpu核数-1​
 })
]
 }
}

2
3
4
5
6
7
8
9
10
11
12

属性介绍如下

• extractComments：默认值为true，表示会将注释抽取到一个单独的文件中，开发阶段，我们可设

置为 false ，不保留注释​

• parallel：使用多进程并发运行提高构建的速度，默认值是true，并发运行的默认数量：

os.cpus().length - 1​

• terserOptions：设置我们的terser相关的配置：​

• compress：设置压缩相关的选项，mangle：设置丑化相关的选项，可以直接设置为true​

• mangle：设置丑化相关的选项，可以直接设置为true​

• toplevel：底层变量是否进行转换​

• keep_classnames：保留类的名称​

• keep_fnames：保留函数的名称​

9.2.2. CSS代码压缩​

CSS 压缩通常是去除无用的空格等，因为很难去修改选择器、属性的名称、值等

CSS的压缩我们可以使用另外一个插件： css-minimizer-webpack-plugin ​

npm install css-minimizer-webpack-plugin -D1

配置方法如下：

const CssMinimizerPlugin = require('css-minimizer-webpack-plugin')
module.exports = {
 // ...
 optimization: {
 minimize: true,

1
2
3
4
5

 minimizer: [
 new CssMinimizerPlugin({
 parallel: true
 })
]
 }
}

6
7
8
9
10
11
12

9.2.3. Html文件代码压缩​

使用 HtmlWebpackPlugin 插件来生成 HTML 的模板时候，通过配置属性 minify 进行 html 优
化

module.exports = {
 ...
 plugin:[
 new HtmlwebpackPlugin({
 ...
 minify:{
 minifyCSS:false, // 是否压缩css​
 collapseWhitespace:false, // 是否折叠空格​
 removeComments:true // 是否移除注释​
 }
 })
]
}

1
2
3
4
5
6
7
8
9
10
11
12
13

设置了 minify ，实际会使用另一个插件 html-minifier-terser

9.2.4. 文件大小压缩​

对文件的大小进行压缩，减少 http 传输过程中宽带的损耗

npm install compression-webpack-plugin -D1

new ComepressionPlugin({
 test:/\.(css|js)$/, // 哪些文件需要压缩​
 threshold:500, // 设置文件多大开始压缩​
 minRatio:0.7, // 至少压缩的比例​
 algorithm:"gzip", // 采用的压缩算法​
})

1
2
3
4
5
6

9.2.5. 图片压缩​

一般来说在打包之后，一些图片文件的大小是远远要比 js 或者 css 文件要来的大，所以图片压缩

较为重要

配置方法如下：

module: {
 rules: [
 {
 test: /\.(png|jpg|gif)$/,
 use: [
 {
 loader: 'file-loader',
 options: {
 name: '[name]_[hash].[ext]',
 outputPath: 'images/',
 }
 },
 {
 loader: 'image-webpack-loader',
 options: {
 // 压缩 jpeg 的配置​
 mozjpeg: {
 progressive: true,
 quality: 65
 },
 // 使用 imagemin**-optipng 压缩 png，enable: false 为关闭​
 optipng: {
 enabled: false,
 },
 // 使用 imagemin-pngquant 压缩 png​
 pngquant: {
 quality: '65-90',
 speed: 4
 },
 // 压缩 gif 的配置​
 gifsicle: {
 interlaced: false,
 },
 // 开启 webp，会把 jpg 和 png 图片压缩为 webp 格式​
 webp: {
 quality: 75
 }
 }

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

 }
]
 },
]
}

39
40
41
42
43

9.2.6. Tree Shaking​

Tree Shaking 是一个术语，在计算机中表示消除死代码，依赖于 ES Module 的静态语法分析
（不执行任何的代码，可以明确知道模块的依赖关系）

在 webpack 实现 Trss shaking 有两种不同的方案：

• usedExports：通过标记某些函数是否被使用，之后通过Terser来进行优化的​

• sideEffects：跳过整个模块/文件，直接查看该文件是否有副作用​

两种不同的配置方案， 有不同的效果​

9.2.6.1. usedExports​

配置方法也很简单，只需要将 usedExports 设为 true

module.exports = {
 ...
 optimization:{
 usedExports
 }
}

1
2
3
4
5
6

使用之后，没被用上的代码在 webpack 打包中会加入 unused harmony export mul 注释，用
来告知 Terser 在优化时，可以删除掉这段代码​

如下面 sum 函数没被用到， webpack 打包会添加注释， terser 在优化时，则将该函数去掉

9.2.6.2. sideEffects​

sideEffects 用于告知 webpack compiler 哪些模块时有副作用，配置方法是在
package.json 中设置 sideEffects 属性

如果 sideEffects 设置为false，就是告知 webpack 可以安全的删除未用到的 exports ​

如果有些文件需要保留，可以设置为数组的形式

"sideEffecis":[
 "./src/util/format.js",
 "*.css" // 所有的css文件​
]

1
2
3
4

上述都是关于 javascript 的 tree shaking ， css 同样也能够实现 tree shaking

9.2.6.3. css tree shaking​

css 进行 tree shaking 优化可以安装 PurgeCss 插件

npm install purgecss-plugin-webpack -D1

const PurgeCssPlugin = require('purgecss-webpack-plugin')
module.exports = {
 ...
 plugins:[
 new PurgeCssPlugin({
 path:glob.sync(
${path.resolve('./src')}/**/*
), {nodir:true}// src里面的所有文件​
 satelist:function(){
 return {
 standard:["html"]
 }
 }
 })
]
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

• paths：表示要检测哪些目录下的内容需要被分析，配合使用glob​

• 默认情况下，Purgecss会将我们的html标签的样式移除掉，如果我们希望保留，可以添加一个

safelist的属性​

9.2.7. 代码分离​

将代码分离到不同的 bundle 中，之后我们可以按需加载，或者并行加载这些文件

默认情况下，所有的 JavaScript 代码（业务代码、第三方依赖、暂时没有用到的模块）在首页全
部都加载，就会影响首页的加载速度

代码分离可以分出出更小的 bundle ，以及控制资源加载优先级，提供代码的加载性能

这里通过 splitChunksPlugin 来实现，该插件 webpack 已经默认安装和集成，只需要配置即可

默认配置中，chunks仅仅针对于异步（async）请求，我们可以设置为initial或者all​

module.exports = {
 ...
 optimization:{
 splitChunks:{
 chunks:"all"
 }
 }
}

1
2
3
4
5
6
7
8

splitChunks 主要属性有如下：

• Chunks，对同步代码还是异步代码进行处理​

• minSize： 拆分包的大小, 至少为minSize，如何包的大小不超过minSize，这个包不会拆分​

• maxSize： 将大于maxSize的包，拆分为不小于minSize的包​

• minChunks：被引入的次数，默认是1​

9.2.8. 内联chunk​

可以通过 InlineChunkHtmlPlugin 插件将一些 chunk 的模块内联到 html ，如 runtime 的
代码（对模块进行解析、加载、模块信息相关的代码），代码量并不大，但是必须加载的

const InlineChunkHtmlPlugin = require('react-dev-utils/InlineChunkHtmlPlugin')
const HtmlWebpackPlugin = require('html-webpack-plugin')
module.exports = {
 ...
 plugin:[
 new InlineChunkHtmlPlugin(HtmlWebpackPlugin,[/runtime.+\.js/]
}

1
2
3
4
5
6
7

9.3. 总结​

关于 webpack 对前端性能的优化，可以通过文件体积大小入手，其次还可通过分包的形式、减少
http请求次数等方式，实现对前端性能的优化​

10. 与webpack类似的工具还有哪些？区别？​

10.1. 模块化工具​

模块化是一种处理复杂系统分解为更好的可管理模块的方式

可以用来分割，组织和打包应用。每个模块完成一个特定的子功能，所有的模块按某种方法组装起

来，成为一个整体(bundle)​

在前端领域中，并非只有 webpack 这一款优秀的模块打包工具，还有其他类似的工具，例如
Rollup 、 Parcel 、 snowpack ，以及最近风头无两的 Vite

通过这些模块打包工具，能够提高我们的开发效率，减少开发成本

这里没有提及 gulp 、 grunt 是因为它们只是定义为构建工具，不能类比

10.1.1. Rollup​

Rollup 是一款 ES Modules 打包器，从作用上来看， Rollup 与 Webpack 非常类似。不过

相比于 Webpack ， Rollup 要小巧的多​

现在很多我们熟知的库都都使用它进行打包，比如： Vue 、 React 和 three.js 等

举个例子：

// ./src/messages.js
export default {
 hi: 'Hey Guys, I am zce~'
}
// ./src/logger.js

1
2
3
4
5

export const log = msg => {
 console.log('---------- INFO ----------')
 console.log(msg)
 console.log('--------------------------')
}
export const error = msg => {
 console.error('---------- ERROR ----------')
 console.error(msg)
 console.error('---------------------------')
}
// ./src/index.js
import { log } from './logger'
import messages from './messages'
log(messages.hi)

6
7
8
9
10
11
12
13
14
15
16
17
18
19

然后通过 rollup 进行打包

$ npx rollup ./src/index.js --file ./dist/bundle.js1

打包结果如下图

可以看到，代码非常简洁，完成不像 webpack 那样存在大量引导代码和模块函数

并且 error 方法由于没有被使用，输出的结果中并无 error 方法，可以看到， rollup 默认开始
Tree-shaking 优化输出结果​

因此，可以看到 Rollup 的优点：

• 代码效率更简洁、效率更高

• 默认支持 Tree-shaking​

但缺点也十分明显，加载其他类型的资源文件或者支持导入 CommonJS 模块，又或是编译 ES 新特

性，这些额外的需求 Rollup 需要使用插件去完成​

综合来看， rollup 并不适合开发应用使用，因为需要使用第三方模块，而目前第三方模块大多数使
用 CommonJs 方式导出成员，并且 rollup 不支持 HMR ，使开发效率降低

但是在用于打包 JavaScript 库时， rollup 比 webpack 更有优势，因为其打包出来的代码更

小、更快，其存在的缺点可以忽略

10.1.2. Parcel​

Parcel ，是一款完全零配置的前端打包器，它提供了 “傻瓜式” 的使用体验，只需了解简单的命令，

就能构建前端应用程序

Parcel 跟 Webpack 一样都支持以任意类型文件作为打包入口，但建议使用 HTML 文件作为入
口，该 HTML 文件像平时一样正常编写代码、引用资源。如下所示：

<!-- ./src/index.html -->
<!DOCTYPE html>
<html lang="en">
<head>
 <meta charset="UTF-8">
 <title>Parcel Tutorials</title>
</head>
<body>
 <script src="main.js"></script>
</body>
</html>

1
2
3
4
5
6
7
8
9
10
11

main.js文件通过 ES Moudle 方法导入其他模块成员​

// ./src/main.js
import { log } from './logger'
log('hello parcel')
// ./src/logger.js
export const log = msg => {
 console.log('---------- INFO ----------')

1
2
3
4
5
6

 console.log(msg)
}

7
8

运行之后，使用命令打包

npx parcel src/index.html1

执行命令后， Parcel 不仅打包了应用，同时也启动了一个开发服务器，跟 webpack Dev
Server 一样

跟 webpack 类似，也支持模块热替换，但用法更简单

同时， Parcel 有个十分好用的功能：支持自动安装依赖，像 webpack 开发阶段突然使用安装某个
第三方依赖，必然会终止 dev server 然后安装再启动。而 Parcel 则免了这繁琐的工作流程

同时， Parcel 能够零配置加载其他类型的资源文件，无须像 webpack 那样配置对应的 loader

打包命令如下：

npx parcel src/index.html1

由于打包过程是多进程同时工作，构建速度会比 Webpack 快，输出文件也会被压缩，并且样式代码

也会被单独提取到单个文件中

可以感受到， Parcel 给开发者一种很大的自由度，只管去实现业务代码，其他事情用 Parcel 解
决

10.1.3. Snowpack​

Snowpack，是一种闪电般快速的前端构建工具，专为现代 Web 设计，较复杂的打包工具（如
Webpack 或 Parcel ）的替代方案，利用 JavaScript 的本机模块系统，避免不必要的工作并保
持流畅的开发体验

开发阶段，每次保存单个文件时， Webpack 和 Parcel 都需要重新构建和重新打包应用程序的整
个 bundle 。而 Snowpack 为你的应用程序每个文件构建一次，就可以永久缓存，文件更改时，
Snowpack 会重新构建该单个文件

下图给出 webpack 与 snowpack 打包区别：

在重新构建每次变更时没有任何的时间浪费，只需要在浏览器中进行HMR更新​

10.1.4. Vite​

vite ，是一种新型前端构建工具，能够显著提升前端开发体验​

它主要由两部分组成：

• 一个开发服务器，它基于 原生 ES 模块 提供了丰富的内建功能，如速度快到惊人的 [模块热更新

HMR​

• 一套构建指令，它使用 Rollup打包你的代码，并且它是预配置的，可以输出用于生产环境的优化过

的静态资源

其作用类似 webpack + webpack-dev-server ，其特点如下：​

• 快速的冷启动

• 即时的模块热更新

• 真正的按需编译

vite 会直接启动开发服务器，不需要进行打包操作，也就意味着不需要分析模块的依赖、不需要编
译，因此启动速度非常快

利用现代浏览器支持 ES Module 的特性，当浏览器请求某个模块的时候，再根据需要对模块的内容
进行编译，这种方式大大缩短了编译时间

原理图如下所示：

在热模块 HMR 方面，当修改一个模块的时候，仅需让浏览器重新请求该模块即可，无须像 webpack
那样需要把该模块的相关依赖模块全部编译一次，效率更高

10.1.5. webpack​

相比上述的模块化工具， webpack 大而全，很多常用的功能做到开箱即用。有两大最核心的特点：
一切皆模块和按需加载

与其他构建工具相比，有如下优势：

• 智能解析：对 CommonJS 、 AMD 、ES6 的语法做了兼容​

• 万物模块：对 js、css、图片等资源文件都支持打包​

• 开箱即用：HRM、Tree-shaking等功能​

• 代码分割：可以将代码切割成不同的 chunk，实现按需加载，降低了初始化时间​

• 插件系统，具有强大的 Plugin 接口，具有更好的灵活性和扩展性​

• 易于调试：支持 SourceUrls 和 SourceMaps​

• 快速运行：webpack 使用异步 IO 并具有多级缓存，这使得 webpack 很快且在增量编译上更加快​

• 生态环境好：社区更丰富，出现的问题更容易解决

11.webpack 离线缓存静态资源如何实现​

• 在配置webpack时，我们可以使用html-webpack-plugin来注入到和html一段脚本来实现将第三

方或者共用资源进行 静态化存储在html中注入一段标识，例如 <%
HtmlWebpackPlugin.options.loading.html %> ,在 html-webpack-plugin 中即可通过

配置html属性，将script注入进去

• 利用 webpack-manifest-plugin 并通过配置 webpack-manifest-plugin ,生成 manifestjson 文件，

用来对比js资源的差异，做到是否替换，当然，也要写缓存script​

• 在我们做Cl以及CD的时候，也可以通过编辑文件流来实现静态化脚本的注入，来降低服务器的压

力，提高性能

• 可以通过自定义plugin或者html-webpack-plugin等周期函数，动态注入前端静态化存储script​

12.webpack 常见的plugin有哪些​

• ProvidePlugin ：自动加载模块，代替require和import​

• html-webpack-plugin 可以根据模板自动生成html代码，并自动引用css和js文件​

• extract-text-webpack-plugin 将js文件中引用的样式单独抽离成css文件​

• DefinePlugin 编译时配置全局变量，这对开发模式和发布模式的构建允许不同的行为非常有

用。

• HotModuleReplacementPlugin 热更新​

• optimize-css-assets-webpack-plugin 不同组件中重复的css可以快速去重​

• webpack-bundle-analyzer 一个webpack的bundle文件分析工具，将bundle文件以可交互

缩放的treemap的形式展示。​

• compression-webpack-plugin 生产环境可采用gzip压缩JS和CSS​

• happypack ：通过多进程模型，来加速代码构建

• clean-wenpack-plugin 清理每次打包下没有使用的文件​

• speed-measure-webpack-plugin :可以看至U每个Loader和Plugin执行耗时（整个扌丁包

耗时、每个Plugin和 Loader 耗时）​

• webpack-bundle-analyzer :可视化Webpack输出文件的体积（业务组件、依赖第三方模块​

13.webpack 插件如何实现​

• webpack本质是一个事件流机制，核心模块：tabable(Sync + Async)Hooks 构造出 ===

Compiler(编译) + Compiletion(创建bundles)​

• compiler对象代表了完整的webpack环境配置。这个对象在启动webpack时被一次性建立，并配

置好所有可操作的设置，包括options、loader和plugin。当在webpack环境中应用一插件时，插

件将收到此compiler对象的引用。可以使用它来访问webpack的主环境​

• compilation对象代表了一次资源版本构建。当运行webpack开发环境中间件时，每当检测到一个

文件变化，就会创建一个新的compilation,从而生成一个新的编译资源。一个compilation对象表

现了当前的模块资源、编译生成资源、变化的文件、以及被跟踪依赖的状态的信息。compilation

对象也提供了很多关键时机的回调，以供插件做自定义处理时选择使用

• 创建一个插件函数，在其prototype上定义apply方法，指定一个webpack自身的事件钩子​

• 函数内部处理webpack内部实例的特定数据​

• 处理完成后，调用webpack提供的回调函数​

scss
复制代码

function MyWebpackPlugin()(}；// prototype 上定义 apply 方法
MyWebpackPlugin.prototype.apply=function(){// 指定一个事件函数挂载到
webpackcompiler.pluginCwebpacksEventHook"funcion (compiler)(console. log(“这是
一个插件”)；// 功能完成调用后webpack提供的回调函数callback()})​

1
2
3

14.webpack有哪些常⻅的Loader​

• file-loader ：把⽂件输出到⼀个⽂件夹中，在代码中通过相对 URL 去引⽤输出的⽂件​

• url-loader ：和 file-loader 类似，但是能在⽂件很⼩的情况下以 base64 的⽅式把⽂件内容注

⼊到代码中去

• source-map-loader ：加载额外的 Source Map ⽂件，以⽅便断点调试​

• image-loader ：加载并且压缩图⽚⽂件

• babel-loader ：把 ES6 转换成 ES5​

• css-loader ：加载 CSS，⽀持模块化、压缩、⽂件导⼊等特性​

• style-loader ：把 CSS 代码注⼊到 JavaScript 中，通过 DOM 操作去加载 CSS。​

• eslint-loader ：通过 ESLint 检查 JavaScript 代码​

15.webpack如何实现持久化缓存​

• 服务端设置http缓存头 （cache-control）​

• 打包依赖和运行时到不同的chunk， 即作为splitChunk,因为他们几乎是不变的 ​

• 延迟加载 ：使用 import()方式 ，可以动态加载的文件分到独立的chunk,以得到自己的

chunkhash​

• 保持hash值的稳定 ：编译过程和文件内通的更改尽量不影响其他文件hash的计算，对于低版本

webpack生成的增量数字id不稳定问题，可用hashedModuleIdsPlugin基于文件路径生成解决​

16.如何⽤webpack来优化前端性能？​

⽤webpack优化前端性能是指优化webpack的输出结果，让打包的最终结果在浏览器运⾏快速⾼效。​

• 压缩代码 ：删除多余的代码、注释、简化代码的写法等等⽅式。可以利⽤webpack的

UglifyJsPlugin 和 ParallelUglifyPlugin 来压缩JS⽂件， 利⽤ cssnano （css-loader?minimize）

来压缩css​

• 利⽤CDN加速 : 在构建过程中，将引⽤的静态资源路径修改为CDN上对应的路径。可以利⽤

webpack对于 output 参数和各loader的 publicPath 参数来修改资源路径​

• Tree Shaking : 将代码中永远不会⾛到的⽚段删除掉。可以通过在启动webpack时追加参数 --

optimize-minimize 来实现​

• Code Splitting : 将代码按路由维度或者组件分块(chunk),这样做到按需加载,同时可以充分利

⽤浏览器缓存

• 提取公共第三⽅库 : SplitChunksPlugin插件来进⾏公共模块抽取,利⽤浏览器缓存可以⻓期缓存这

些⽆需频繁变动的公共代码

17.webpack treeShaking机制的原理​

• treeShaking 也叫 摇树优化 ，是一种通过移除多于代码，来优化打包体积的， 生产环境默认开

启 。

• 可以在 代码不运行 的状态下，分析出 不需要的代码 ；

• 利用 es6模块 的规范 ​

◦ ES6 Module引入进行 静态分析 ，故而 编译的时候正确判断到底加载了那些模块 ​

◦ 静态分析程序流，判断那些模块和变量未被使用或者引用，进而删除对应代码

